Fractal spatial variability and its genesis of sediments in Suhongtu Gobi
Received date: 2019-06-28
Revised date: 2020-01-29
Online published: 2021-03-09
In the Gobi Desert, the composition structure of its sediments have fractal characteristics. These fractal characteristics and their variability to indicate sand’s role in the formation of surface sediments have not been well understood. In this study, we calculated the fractal dimension of surface sediments in the Suhongtu Gobi Desert, Alxa League, Inner Mongolia, China and analyzed its spatial variability. The results showed that the fractal dimensions of sediments increase with the increase of jumping components’ content (0.050-0.179 mm) and then decrease with the increase of creepping and wind erosion residual components’ content (0.179-20.919 mm). In the Gobi Desert, the wind is the dominant factor in shaping the landscape. Gobi sediments’ fractal values are smaller than those of alluvial and alluvial debris flow sediments (2.630-2.738) and larger than those of desert and loess sediments with dominant wind force (2.122 and 1.930, respectively). The wind force makes the Gobi Desert form a “homogeneous surface” with a spatial variability of moderate spatial correlation (32.8%). The dominant wind direction is exposed to the Gobi surface. The sediments are mainly composed of vermicular and wind erosion residual components (average content of 59.88%), and the mean fractal dimension is 2.39. When there is lower wind toward the semi-desert Gobi surface, the sediments are dominated by jump components (average content of 46.96%), with fractal dimension mean values of 2.45 and 2.48, respectively. Furthermore, with weak influence by the dominant wind, the sandy gravel surface between mountains has more vermicular and wind erosion residual components (average content of 58.22%), with a fractal dimension mean value of 2.46. Hence, fractal and variability indices can reflect the sand’s role in changing the Gobi sediments’ composition.
Key words: sediments; fractal dimension; spatial variability; Gobi
LIU Xiya,WANG Haibing,ZUO Hejun,XIAO Jianhua . Fractal spatial variability and its genesis of sediments in Suhongtu Gobi[J]. Arid Land Geography, 2021 , 44(1) : 168 -177 . DOI: 10.12118/j.issn.1000–6060.2021.01.18
[1] | 伯努瓦·B·曼德布罗特. 大自然的分形几何学[M]. 上海: 上海远东出版社, 1998: 8-11. |
[1] | [ Mandelbrodt Benoit B. Fractal geometry of nature[M]. Shanghai: Shanghai Far East Publishers, 1998: 8-11. ] |
[2] | 李保国. 分形理论在土壤科学中的应用及其展望[J]. 土壤学进展, 1994,22(1):1-10. |
[2] | [ Li Baoguo. Application and prospect of fractal theory in soil science[J]. Progress in Soil Science, 1994,22(1):1-10. ] |
[3] | 朱晓华, 色布力马. 中国沙漠化土地类型的分形研究[J]. 中国沙漠, 2006,26(1):35-39. |
[3] | [ Zhu Xiaohua, Se Bulima. Fractal analysis applied to fractal character of China desertification land[J]. Journal of Desert Research, 2006,26(1):35-39. ] |
[4] | 董莉丽, 郑粉莉. 陕北黄土丘陵沟壑区土壤粒径分布分形特征[J]. 土壤, 2010,42(2):302-308. |
[4] | [ Dong Lili, Zheng Fenli. Fractal characteristics of soil particle size distributions in gully-hilly regions of the Loess Plateau, north of Shaanxi, China[J]. Soils, 2010,42(2):302-308. ] |
[5] | Hong L. Fractal dimension of soil particles under different plant communities in mountainous area[J]. IOP Conference Series: Materials Science and Engineering, 2018,439(3):032124, doi: 10.1088/1757-899X/439/3/032124 |
[6] | 徐建华, 艾南山, 金炯, 等. 沙漠化的分形特征研究[J]. 中国沙漠, 2002,22(1):6-10. |
[6] | [ Xu Jianhua, Ai Nanshan, Jin Jiong, et al. Study on fractal characters of desert and desertification[J]. Journal of Desert Research, 2002,22(1):6-10. ] |
[7] | 武生智, 马崇武, 苗天德. 沙粒级配和沙丘分布的分形分析[J]. 中国沙漠, 1999,19(3):50-53. |
[7] | [ Wu Shengzhi, Ma Chongwu, Miao Tiande. Fractal analysis of sand-grading and dune distribution[J]. Journal of Desert Research, 1999,19(3):50-53. ] |
[8] | 苏永中, 赵哈林. 科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J]. 生态学报, 2004,24(1):71-74. |
[8] | [ Su Yongzhong, Zhao Halin. Fractal features of soil particle size distribution in the desertification process of the farmland in Horqin Sandy Land[J]. Acta Ecologica Sinica, 2004,24(1):71-74. ] |
[9] | Ding W F. Fractal dimension features of soil aggregate distribution with the different reclamation years on Loess Plateau[J]. NJAS-Wageningen Journal of Life Sciences, 2014,6(5):550-560. |
[10] | 姚姣转, 刘廷玺, 童新, 等. 科尔沁沙地沙丘-草甸相间地土壤颗粒的分形特征[J]. 中国沙漠, 2016,36(2):433-440. |
[10] | [ Yao Jiaozhuan, Liu Tingxi, Tong Xin, et al. Soil particle fractal dimension in the dune-meadow ecotone of the Horqin Sandy Land[J]. Journal of Desert Research, 2016,36(2):433-440. ] |
[11] | 史舟, 李艳. 地统计学在土壤学中的应用[M]. 北京: 中国农业出版社, 2006: 3-9. |
[11] | [ Shi Zhou, Li Yan. Application of geostatistics in soil science[M]. Beijing: China Agricultural Publishing House, 2006: 3-9. ] |
[12] | 贾晓红, 李新荣, 张景光, 等. 沙冬青灌丛地的土壤颗粒大小分形维数空间变异性分析[J]. 生态学报, 2006,26(9):2827-2833. |
[12] | [ Jia Xiaohong, Li Xinrong, Zhang Jingguang, et al. Spatial heterogeneity analysis of fractal dimension of soil particle for Ammopiptanhus mongolicus shrub[J]. Acta Ecologica Sinica, 2006,26(9):2827-2833. ] |
[13] | Mohammadi M, Shabanpour M, MohamMadi M H, et al. Spatial variability of soil textural fractions and fractal parameters derived from particle size distributions[J]. Pedosphere, 2019,29(2):224-234. |
[14] | 马媛, 丁树文, 邓羽松, 等. 五华县崩岗洪积扇土壤分形特征及空间变异性研究[J]. 水土保持学报, 2016,30(5):279-285. |
[14] | [ Ma Yuan, Ding Shuwen, Deng Yusong, et al. Study of soil fractal dimension characteristic and spatial variability in collapsing alluvial fan of Wuhua County[J]. Journal of Soil and Water Conservation, 2016,30(5):279-285. ] |
[15] | 冉啟香, 罗蔚, 张翔, 等. 分形在土壤空间变异性评价中的应用研究[J]. 中国农村水利水电, 2010(7):5-8. |
[15] | [ Ran Qixiang, Luo Wei, Zhang Xiang, et al. Application of multifractality to evaluation of soil spatial variability[J]. China Rural Water and Hydropower, 2010(7):5-8. ] |
[16] | 中国黑戈壁地区生态本底科学考察队. 中国黑戈壁研究[M]. 北京: 科学出版社, 2014: 4-5. |
[16] | [ Scientific Team of Ecological Background in Black Gobi Area of China. A study on the Black Gobi in China[M]. Beijing: Science Press, 2014: 4-5. ] |
[17] | 冯益明, 智长贵, 姚爱冬. 基于决策树的戈壁信息提取研究[J]. 干旱区地理, 2013,36(1):125-130. |
[17] | [ Feng Yiming, Zhi Changgui, Yao Aidong. Gobi information extraction based on decision tree classification method[J]. Arid Land Geography, 2013,36(1):125-130. ] |
[18] | 殷代英, 屈建军, 赵素平, 等. 砾质戈壁在不同扰动方式下的风蚀量研究——以敦煌雅丹地质公园北边的砾质戈壁为例[J]. 干旱区地理, 2016,39(3):495-503. |
[18] | [ Yin Daiying, Qu Jianjun, Zhao Suping, et al. Amount of wind erosion to gravel gobi under different disturbing modes[J]. Arid Land Geography, 2016,39(3):495-503. ] |
[19] | Li Y, Huang C M, Wang B L, et al. A unified expression for grain size distribution of soils[J]. Geoderma, 2017,288:105-119. |
[20] | Hossein B, Mostafa R, Mansouri Z M, et al. Particle size distribution models, their characteristics and fitting capability[J]. Journal of Hydrology, 2015,529(3):872-889. |
[21] | 董智, 王丽琴, 杨文斌, 等. 额济纳盆地戈壁沉积物粒度特征分析[J]. 中国水土保持科学, 2013,11(1):32-38. |
[21] | [ Dong Zhi. Wang Liqin, Yang Wenbin, et al. Grain size characteristics of gobi sediment in Ejina Basin[J]. Science of Soil and Water Conservation, 2013,11(1):32-38. ] |
[22] | 刘茜雅, 王海兵, 左合君, 等. 砂砾质戈壁沉积物分形维数计算及其对风沙作用的指示意义[J]. 干旱区资源与环境, 2019,33(10):125-130. |
[22] | [ Liu Xiya, Wang Haibing, Zuo Hejun, et al. Calculation of fractal dimension of gobi sediments and its significance to the effect of wind-induced soil erosion accumulation[J]. Journal of Arid Land Resources and Environment, 2019,33(10):125-130. ] |
[23] | 乔江波, 朱元骏, 贾小旭, 等. 黄土高原关键带全剖面土壤水分空间变异性[J]. 水科学进展, 2017,28(4):515-522. |
[23] | [ Qiao Jiangbo, Zhu Yuanjun, Jia Xiaoxu, et al. Spatial variability of soil water for the entire profile in the critical zone of the Loess Plateau[J]. Advances in Water Science, 2017,28(4):515-522. ] |
[24] | 刘继龙, 刘璐, 马孝义, 等. 不同尺度不同土层土壤盐分的空间变异性研究[J]. 应用基础与工程科学学报, 2018,26(2):305-312. |
[24] | [ Liu Jilong, Liu Lu, Ma Xiaoyi, et al. spatial variability of soil salt in different soil layers at different scales[J]. Journal of Basic Science and Engineering, 2018,26(2):305-312. ] |
[25] | 刘陶, 杨小平, 董巨峰, 等. 巴丹吉林沙漠沙丘形态与风动力关系的初步研究[J]. 中国沙漠, 2010,30(6):1285-1291. |
[25] | [ Liu Tao, Yang Xiaoping, Dong Jufeng, et al. A preliminary study of relation between megadune shape and wind regime in the Badain Jaran Desert[J]. Journal of Desert Research, 2010,30(6):1285-1291. ] |
[26] | 吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003: 31-33. |
[26] | [ Wu Zheng. Wind-sand geomorphology and sand control engineering[M]. Beijing: Science Press, 2003: 31-33. ] |
[27] | 吕志发. 粒度曲线和参数序列综合分析及其在环境分析中的应用[J]. 煤田地质与勘探, 1990(2): 12-16, 71-72. |
[27] | [ Lü Zhifa. The comprehensive sequence analysis of size curves and indices and their application in environmental analysis[J]. Coal Geology & Exploration, 1990(2): 12-16, 71-72. ] |
[28] | Bagnold R A. The physics of sand and dunes[J]. Nature, 2009,457:1084. |
[29] | 杨婷, 景航, 姚旭, 等. 黄土丘陵不同土地利用方式下土壤颗粒组成及其分形维数特征[J]. 水土保持研究, 2016,23(3):1-5, 24. |
[29] | [ Yang Ting, Jing Hang, Yao Xu, et al. Soil particle composition and its fractal dimension characteristics of different land uses in Loess Hilly Region[J]. Research of Soil and Water Conservation, 2016,23(3):1-5, 24. ] |
[30] | Zhao S W, Jing Su, Yang Y H, et al. A fractal method of estimating soil structure changes under different vegetations on Ziwuling Mountains of the Loess Plateau, China[J]. Agricultural Sciences in China, 2006,5(7):530-538. |
[31] | 倪化勇, 刘希林. 泥石流粒度分维值的初步研究[J]. 水土保持研究, 2006(1):89-91. |
[31] | [ Ni Huayong, Liu Xilin. A preliminary study on debris flow grain-size fractal dimension[J]. Research of Soil and Water Conservation, 2006(1):89-91. ] |
[32] | 黄祺, 陈宁生, 朱云华, 等. 泥石流源区砾石土的粒度分形特征[J]. 山地学报, 2012,30(5):578-584. |
[32] | [ Huang Qi, Chen Ningsheng, Zhu Yunhua, et al. A preliminary study on debris flow grain-size fractal dimension[J]. Mountain Research, 2012,30(5):578-584. ] |
[33] | 陈冬梅, 穆桂金. 不同沉积环境下沉积物的粒度分形特征的对比研究[J]. 干旱区地理, 2004,27(1):47-51. |
[33] | [ Chen Dongmei, Mu Guijin. Comparising study of grain-size fractal dimensions characteristics between several sediments with different forming environments[J]. Arid Land Geography, 2004,27(1):47-51. ] |
[34] | 熊鑫, 王海兵, 肖建华, 等. 戈壁沙砾质地表沉积物全粒径分布模式及其对分选作用的指示意义[J]. 中国沙漠, 2019,39(2):202-208. |
[34] | [ Xiong Xin, Wang Haibing, Xiao Jianhua, et al. Particle size distribution models of gobi sediments and its significance to the effect of sorting[J]. Journal of Desert Research, 2019,39(2):202-208. ] |
[35] | Wang H B, Jia X P, Li Y S, et al. Horizontal wind erosion flux and potential dust emission in arid and semiarid regions of China: A major source area for East Asia dust storms[J]. Catena, 2015(133):373-384. |
[36] | 龚元石, 廖超子, 李保国. 土壤含水量和容重的空间变异及其分形特征[J]. 土壤学报, 1998(1):10-15. |
[36] | [ Gong Yuanshi, Liao Chaozi, Li Baoguo. Spatial variability and fractal dimension for soil water content and bulk density[J]. Acta Pedologica Sinica, 1998(1):10-15. ] |
/
〈 |
|
〉 |