Earth Surface Process

Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin

Expand
  • 1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
    2. Yellow River Institute of Hydraulic Research, Zhengzhou 450003, Henan, China
    3. Heihe Water Resources and Ecological Protection Research Center, Lanzhou 730030, Gansu, China

Received date: 2020-05-08

  Revised date: 2020-08-24

  Online published: 2021-03-09

Abstract

The Yellow River Basin is mainly distributed in arid, semi-arid, and semi-humid areas with a fragile ecological environment, which has become the most serious soil erosion area in China and even in the world. Evapotranspiration (ET) is an essential part of the land water and energy cycle, playing a vital role in the global ecosystem regulation and the hydrological cycle. ET is mainly composed of vegetation and transpiration of soil water and different vegetation cover or land-use types, showing different spatial-temporal distribution characteristics. Accurate exploration of the ET’s spatial-temporal distribution and its response relationship is conducive to mastering regional surface water and heat balance law. Remote sensing has been widely used in ET’s dynamic monitoring on a global or regional scale. Analyzing the ET’s spatial-temporal changes in the Yellow River Basin promotes understanding the impact of vegetation and land-use changes on the water cycle and the rational allocation of water resources. On the basis of ET-MODIS data, normalized difference vegetation index (NDVI), and land-use products as data sources, we studied the ET’s spatial-temporal change pattern in the Yellow River Basin from 2001 to 2015 using the Manner-Kendall test and Sen’s trend analysis. We discussed ET’s impact and the different change characteristics under different NDVI conditions and land-use types. We found the following results: (1) The ET distribution pattern in the Yellow River Basin is obvious, gradually decreasing from southeast to northwest. The average ET value in the study area is 319.24 mm, and the average NDVI is 0.59. The high values of ET and NDVI are concentrated on the downstream areas, and their spatial distribution is in good consistent. (2) The time series of ET and NDVI in the Yellow River Basin all showed a fluctuant growth state, and the changes in each river segment were significantly different from 2001 to 2015. In inter-annual changes, the trends of ET and NDVI are the same, and they have a significantly increased level in the middle reaches. (3) Vegetation change is the main factor affecting ET, positively correlating with ET in most Yellow River Basin areas. (4) From 2001 to 2015, the area of land cover types in the Yellow River Basin except the weeding areas showed an increasing trend, in which the ET response in different river reaches was different to some extent. The spatial-temporal differences in land-use types in response to ET are obvious. It is of great significance for ecosystem protection and water resources management to comprehensively analyze the variation law of evaporation in the upper, middle, and lower reaches of the Yellow River Basin and provide a reference for promoting the sustainable development of the regional economy and society.

Cite this article

GU Jiahe,XUE Huazhu,DONG Guotao,ZHOU Lijuan,LI Jingru,DANG Suzhen,LI Shangzhi . Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021 , 44(1) : 158 -167 . DOI: 10.12118/j.issn.1000–6060.2021.01.17

References

[1] 叶红, 张廷斌, 易桂花, 等. 2000—2014年黄河源区ET时空特征及其与气候因子关系[J]. 地理学报, 2018,73(11):2117-2134.
[1] [ Ye Hong, Zhang Tingbin, Yi Guihua, et al. Spatio-temporal characteristics of evapotranspiration and its relationship with climate factors in the source region of the Yellow River from 2000 to 2014[J]. Acta Geographica Sinica, 2018,73(11):2117-2134. ]
[2] 姜艳阳, 王文, 周正昊. MODIS MOD16蒸散发产品在中国流域的质量评估[J]. 自然资源学报, 2017,32(3):517-528.
[2] [ Jiang Yanyang. Wang Wen, Zhou Zhenghao. Evaluation of MODIS MOD16 evaportranspiration product in Chinese river basins[J]. Journal of Natural Resources, 2017,32(3):517-528. ]
[3] 曹文旭, 张志强, 查同刚, 等. 基于Budyko假设的潮河流域气候和植被变化对实际蒸散发的影响研究[J]. 生态学报, 2018,38(16):5750-5758.
[3] [ Cao Wenxu, Zhang Zhiqiang, Zha Tonggang, et al. Exploring the effects of vegetation dynamics and climate changes on the Chaohe watershed actual evapotranspiration: Budyko Hypojournal approach[J]. Acta Ecologica Sinica, 2018,38(16):5750-5758. ]
[4] 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017,37(9):2994-3008.
[4] [ Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of northwest China[J]. Acta Ecologica Sinica, 2017,37(9):2994-3008. ]
[5] 杨秀芹, 王国杰, 潘欣 等. 基于GLEAM遥感模型的中国1980—2011年地表蒸散发时空变化[J]. 农业工程学报, 2015,31(21):132-141.
[5] [ Yang Xiuqin, Wang Guojie, Pan Xin, et al. Spatio-temporal variability of terrestrial evapotranspiration in China from 1980 to 2011 based on GLEAM data[J]. Journal of Agricultural Engineering, 2015,31(21):132-141. ]
[6] 董晴晴, 占车生, 王会肖, 等. 2000年以来的渭河流域实际蒸散发时空格局分析[J]. 干旱区地理, 2016,166(2):97-105.
[6] [ Dong Qingqing, Zhan Chesheng, Wang Huixiao, et al. Spatio-temporal patterns of actual evapotranspiration in the Weihe River Basin since 2000[J]. Arid Land Geography, 2016,166(2):97-105. ]
[7] 孙永军, 周强, 杨日红. 黄河流域土地荒漠化动态变化遥感研究[J]. 国土资源遥感, 2009,20(2):74-78.
[7] [ Sun Yongjun, Zhou Qiang, Yang Rihong. A study of land desertification dynamic change in Yellow River Basin[J]. Remote Sensing of Land and Resources, 2009,20(2):74-78. ]
[8] 王思远, 王光谦, 陈志祥. 黄河流域生态环境综合评价及其演变[J]. 山地学报, 2004,22(2):133-139.
[8] [ Wang Siyuan, Wang Guangqian, Chen Zhixiang. Eco-environmental evaluation and changes in Yellow River Basin[J]. Journal of Mountain Science, 2004,22(2):133-139. ]
[9] 金翠, 张柏, 宋开山, 等. 土地利用/覆被变化对区域蒸散发影响的遥感分析——以吉林省乾安县为例[J]. 干旱区研究, 2009,26(5):734-743.
[9] [ Jin Cui, Zhang Bai, Song Kaishan, et al. RS-based analysis on the effects of land use/cover change on regional evapotranspiration: A case study Qian’ an County, Jilin Province[J]. Arid Zone Research, 2009,26(5):734-743. ]
[10] 王燕鑫, 李瑞平, 李夏子. 河套灌区不同土地类型生长季蒸散发量估算及其变化特征[J]. 干旱区研究, 2020,37(2):364-373.
[10] [ Wang Yanxin, Li Ruiping, Li Xiazi. Estimation and variability of evapotranspiration for different land types during the growing season in the Hetao Irrigation District[J]. Arid Zone Research, 2020,37(2):364-373. ]
[11] 曾丽红, 宋开山, 张柏, 等. 基于SEBAL模型与MODIS产品的松嫩平原蒸散量研究[J]. 干旱区资源与环境, 2011,25(1):140-147.
[11] [ Zeng Lihong, Song Kaishan, Zhang Bai, et al. Study on regional evapotranspiration over Songnen Plain based on SEBAL model and MODIS products[J]. Arid Land Resources and Environment, 2011,25(1):140-147. ]
[12] Ruhoff A L, Paz A R, Aragao L E O C, et al. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande Basin[J]. International Association of Scientific Hydrology Bulletin, 2013,58(8):1658-1676.
[13] 钟巧, 焦黎, 李稚, 等. 博斯腾湖流域潜在蒸散发时空演变及归因分析[J]. 干旱区地理, 2019,42(1):103-112.
[13] [ Zhong Qiao, Jiao Li, Li Zhi, et al. Spatial and temporal changes of potential evapotranspiration and its attribution in the Bosten Lake Basin[J]. Arid Land Geography, 2019,42(1):103-112. ]
[14] 张翔, 朱晓昱, 沈贝贝, 等. 呼伦贝尔植被蒸散发时空变化研究[J]. 中国农业资源与区划, 2020,41(4):308-316.
[14] [ Zhang Xiang, Zhu Xiaoyu, Shen Beibei, et al. Analysis of temporal and spatial variation of vegetation evaportranspiration in Hulunbuir[J]. China’s Agricultural Resources and Regionalization, 2020,41(4):308-316. ]
[15] 尹云鹤, 吴绍洪, 赵东升, 等. 1981—2010年气候变化对青藏高原实际蒸散的影响[J]. 地理学报, 2012,67(11):1471-1481.
[15] [ Yin Yunhe, Wu Shaohong, Zhao Dongsheng, et al. Impact of climate change on actual evapotranspiration on the Tibetan Plateau during 1981—2010[J]. Acta Geographica Sinica, 2012,67(11):1471-1481. ]
[16] 刘蓉, 文军, 王欣. 黄河源区蒸散发量时空变化趋势及突变分析[J]. 气候与环境研究, 2016,21(5):503-511.
[16] [ Liu Rong, Wen Jun, Wang Xin. Spatial-temporal variation and abrupt analysis of evapotranspiration over the Yellow River source region[J]. Climatic and Environmental Research, 2016,21(5):503-511. ]
[17] 韩盟伟, 赵广举, 穆兴民, 等. 黄土高原1959—2015年潜在蒸发量的时空变化[J]. 干旱区地理, 2017,40(5):997-1004.
[17] [ Han Mengwei, Zhao Guangju, Mu Xingmin, et al. Spatial and temporal variations of potential evapotranspiration on the Loess Plateau during 1959—2015[J]. Arid Land Geography, 2017,40(5):997-1004. ]
[18] 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017,37(9):2994-3008.
[18] [ Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of northwest China[J]. Acta Ecologica Sinica, 2017,37(9):2994-3008. ]
[19] Wang Y, Liu Y B, Jin J X. Contrast effects of vegetation cover change on evapotranspiration during a revegetation period in the Poyang Lake Basin, China[J]. Forests, 2018,9(4):217-230.
[20] Wu R J, Xing X R. Variation characteristics and influencing factors of actual evapotranspiration under various vegetation types: A case study in the Huaihe River Basin, China[J]. Journal of Applied Ecology, 2016,27(6):1727-1736.
[21] Ma Z, Yan N, Wu B, et al. Variation in actual evapotranspiration following changes in climate and vegetation cover during an ecological restoration period (2000—2015) in the Loess Plateau, China[J]. Science of the Total Environment, 2019,689:564-545.
[22] 阮宏威, 于静洁. 1992—2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019,74(7):1292-1304.
[22] [ Ruan Hongwei, Yu Jingjie. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015[J]. Acta Geographica Sinica, 2019,74(7):1292-1304. ]
[23] Yan N N, Tian F Y, Wu B F, et al. Spatiotemporal analysis of actual evapotranspiration and its causes in the Hai Basin[J]. Remote Sensing, 2018,10(2):332-348.
[24] Liu M Q, Hu D Y. Response of wetland evapotranspiration to land use/cover change and climate change in Liaohe River Delta, China[J]. Water, 2019,11(5):955-970.
[25] He Z, He J P. Spatio-temporal variation of vegetation cover based on SPOT-VGT in Yellow River Basin[J]. Ecology and Environmental Sciences, 2012,21(10):1655-1659.
[26] Liu L L, Xiao F J. Spatial-temporal correlations of NDVI with precipitation and temperature in Yellow River Basin[J]. Chinese Journal of Ecology, 2006,25(5):477-481.
[27] 田智慧, 张丹丹, 赫晓慧, 等. 2000—2015年黄河流域植被净初级生产力时空变化特征及其驱动因子[J]. 水土保持研究, 2019,26(2):259-266.
[27] [ Tian Zhihui, Zhang Dandan, He Xiaohui, et al. Spatiotemporal variations in vegetation net primary productivity and their driving factors in Yellow River Basin from 2000 to 2015[J]. Research of Soil and Water Coservation, 2019,26(2):259-266. ]
[28] 秦年秀, 姜彤. 2003年重大自然灾害回顾[J]. 自然灾害学报, 2005,14(1):38-44.
[28] [ Qin Nianxiu, Jiang Tong. A review on global natural disasters in 2003[J]. Journal of Natural Disasters, 2005,14(1):38-44. ]
[29] 陈晓菲, 任立良, 江善虎, 等. 赣江上游流域蒸散发量影响因素的遥感分析[J]. 水资源保护, 2014,30(2):33-37.
[29] [ Chen Xiaofei, Ren Liliang, Jiang Shanhu, et al. RS-based analysis of factors influencing evapotranspiration in upstream region of Ganjiang Basin[J]. Water Resources Protection, 2014,30(2):33-37. ]
[30] 张殿君, 张学霞, 武鹏飞, 等. 黄土高原典型流域土地利用变化对蒸散发影响研究[J]. 干旱区地理, 2011,34(3):400-408.
[30] [ Zhang Dianjun, Zhang Xuexia, Wu Pengfei, et al. Relationship between ET and LUCC in a typical watershed of Loess Plateau over the past 20 years[J]. Arid Land Geography, 2011,34(3):400-408. ]
Outlines

/