Model comparison of mountain torrent disaster risk assessment in different spatial scale

Expand
  • 1 Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China; 2 College of Resources and Environmental Sciences,Gansu Agricultural University,Lanzhou 730070,Gansu,China; 3 Northwest Institute of EcoEnvironment and Resources,Chinese Academy of Sciences,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China; 4.Geological Natural Disaster Prevention Research Institute,Gansu Academy of Sciences,Lanzhou 730000,Gansu,China

Received date: 2018-12-01

  Revised date: 2019-03-19

  Online published: 2019-05-21

Abstract

 This paper selected Hexi Corridor and Zhangye District,Gansu Province,China as the study zones with different spatial scale of geography division (large and medium scale,e.g.Hexi Corridor) and region (small scale,e.g. Zhangye District).Three popular models in assessing mountain torrent disaster including multicriterion model,MaxEnt model and information model were set as the study object.Based on the established risk assessment index system about mountain torrent disaster,the map of risk assessment on mountain torrent disaster for Hexi Corridor and Zhangye District was accomplished using the three models respectively.The model’s suitability was analyzed from the perspectives of the model validation,spatial autocorrelation,the precision comparison and the scale effect based on the statistics data about the geological disasters investigation and divisional reports in Gansu Province,and the preferred model was figured out.The result showed that MaxEnt model was the optimal model for risk assessment about mountain torrent disaster at the spatial scale of geography division.The multicriterion model wasn’t suitable at the spatial scale of region,and the results from three models for Zhangye District were not as good as those for Hexi Corridor.The scale effect of the three models was extremely obvious, and the application effect at the spatial scale of Hexi Corridor was better than that at the spatial scale of Zhangye District.The MaxEnt model was superior to the multicriterion decision model and the information model regardless of the spatial scale,and can be used to support the monitoring, prewarning and protection engineering projects about mountain torrent disaster in Hexi Corridor.

Cite this article

TIAN Feng, ZHANG Jun, RAN Youhua, LIU Jinpeng, ZHOU Yi .

Model comparison of mountain torrent disaster risk assessment in different spatial scale[J]. Arid Land Geography, 2019 , 42(3) : 559 -569 . DOI: 10.12118/j.issn.1000-6060.2019.03.12

References

[1] 崔鹏. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展,2014,33(2):145-152. [CUI Peng. Progress and prospects in research on mountain hazards in China[J]. Progress in Geography, 2014, 33(2):145-152.] [2] 史培军,孔锋,叶谦,等. 灾害风险科学发展与科技减灾[J]. 地球科学进展,2014,29(11):1205-1211. [SHI Peijun, KONG Feng, YE Qian, et al. Disaster risk science development and disaster risk reduction using science and technology[J]. Advances in Earth Science, 2014, 29(11):1205-1211.] [3] OZSAHIN E, KAYMAZ C K. Avalanche susceptibility and risk analysis of eastern anatolian using GIS[J]. Procedia-Social and Behavioral Sciences, 2014, 120: 663-672. [4] TOTSCHING R, FUCHS S. Mountain torrents: Quantifying vulnerability and assessing uncertainties[J]. Engineering Geology, 2015, 155:31-44. [5] DONATI L, TURRINI M C. An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: Application to an area of the Apennines (Valnerina; Perugia, Italy) [J]. Engineering Geology, 2002, 63:277-289. [6] 李祎琛,何亚伯,汪洋. 基于粗糙集RBF神经网络村镇山洪灾害损失预测研究-以神农架林区为例[J]. 灾害学,2017,32(2):227-234. [LI Yichen, HE Yabo, WANG Yang. Mountain torrent disaster loss prediction research based on RS and RBF neural network: A case study on shennongjia[J]. Journal of Catastrophology, 2017, 32(2):227-234.] [7] UNDRO. Natural disasters and vulnerability analysis[R].Geneva: Office of the United Nations Disaster Relief Coordinator,1982. [8] 唐川,朱静. 基于GIS的山洪灾害风险区划[J]. 地理学报,2005,60(1):87-94.[TANG Chuan, ZHU Jing. A GIS based regional torrent risk zonation[J]. Journal of Geographical Sciences, 2005,60(1):87-94.] [9] 杜俊,任洪玉,张平仓,等. 大空间尺度山洪灾害危险评估的比较研究[J]. 灾害学,2016,31(3):66-72.[DU Jun, REN Hongyu, ZHANG Pingcang, et al. Comparative study of the hazard assessment of mountain torrent disasters in macro scale[J]. Journal of Catastrophology, 2016, 31(3):66-72.] [10] DU X Y, LIN X F. Conceptual models on regional natural disaster risk assessment[J]. Procedia Engineering,2012, 45:96-100. [11] 田丰,张军,冉有华. 河西走廊泥石流灾害危险性评价及影响因子分析[J]. 自然灾害学报,2017,26(3):139-146. [TIAN Feng, ZHANG Jun, RAN Youhua. Hazard assessment and influence factors analysis of debris flow disaster in Hexi Corridor[J]. Journal of Natural Disasters, 2017,26(3):139-146.] [12] 唐川,马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学,2015,35(1):91-98.[TANG Chuan, MA Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 2015,35(1):91-98.] [13] 陈亚宁,王怀军,王志成,等. 西北干旱区极端气候水文事件特征分析[J]. 干旱区地理,2017,40(1):1-9.[CHEN Yaning, WANG Huaijun, WANG Zhicheng, et al. Characteristics of extreme climatic/hydrological events in the arid region of northwestern China[J]. Arid Land Geography,2017,40(1):1-9.] [14] 顾春杰,孙爽,马金珠. 基于DEA模型和生产函数的泥石流易损性评价[J]. 兰州大学学报(自然科学版),2014,50(5):751-756. [GU Chunjie, SUN Shuang, MA Jinzhu. Debris flow vulnerability assessment based on DEA model and production function[J]. Journal of Lanzhou University (Natural Sciences), 2014, 50(5):751-756.] [15] 李发文,张行南,杜成旺. 基于GIS和数学形态学的洪水淹没研究[J]. 水利水电科技进展,2005,25(6):14-24. [LI Fawen, ZHANG Xingnan, DU Chengwang. Study on flood submergence based on GIS and mathematical morphology[J]. Advances in Science and Technology of Water Resources, 2005, 25(6):14-24.] [16] 张磊,王文,文明章,等. 基于“FloodArea”模型的山洪灾害精细化预警方法研究[J]. 复旦学报(自然科学版),2015,54(3):282-287. [ZHANG Lei, WANG Wen, WEN Mingzhang, et al. Research on refined early-warming method of mountain flood disaster based on FloodArea[J]. Journal of Fudan University (Natural Science), 2015,54(3):282-287.] [17] 丁志雄,李纪人,李琳. 基于GIS格网模型的洪水淹没分析方法[J]. 水利学报,2004,35(6):56-67. [DING Zhixiong, LI Jiren, LI Lin. Method for flood submergence analysis based on GIS grid model[J]. Journal of Hydraulic Engineering, 2004, 35(6): 56-67.] [18] 刘雪萍. IDRISI遥感图像处理与地理信息系统教程[M].北京:电子工业出版社,2014:127-135. [LIU Xueping. Tutorial of IDRISI remote sensing image processing and geographical information system[M]. Beijing: Publishing House of Electronics Industry,2014,127-135.] [19] PHILLIPS S J, ANDERSONB R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4):231–259. [20] ZHANG Jun, TIAN Feng, ZHOU Dongmei, et al. Land eco-security evaluation in the Shule River Basin during 2005-2014 in Gansu Province, China[J], Human and Ecological Risk assessment: An International Journal, 2017, 23(7): 1731-1744. [21] 宁娜,马金珠,张鹏,等. 基于GIS和信息量法的甘肃南部白龙江流域泥石流灾害危险性评价[J]. 资源科学,2013, 35(4):892-899. [NING Na, MA Jinzhu, ZHANG Peng, et al. Debris flow hazard assessment for the bailongjiang river, Southern Gansu [J]. Resources Science, 2013, 35(4):892-899.] [22] 毕硕本,蒋婷婷,钱育君. 1470-1912年西北东部地区极端干旱事件的复原及分形特征研究[J]. 干旱区地理,2017,40(2): 248-256. [BI Shuoben, JIANG Tingting, QIAN Yujun. Recovery of extreme drought events and their fractal characteristics in the eastern Northwest China from 1470 to 1912[J]. Arid Land Geography,2017,40(2): 248-256.] [23] SHANGGUAN W, DAI Y, LIU B, et al. A soil particle-size distribution dataset for regional land and climate modelling in China, Geoderma[J]. 2012,172: 85-91. [24] 何杰,阳坤. 中国区域高时空分辨率地面气象要素驱动数据集[DB/OC]. 寒区旱区科学数据中心,2011. doi:10.3972/westdc.002.2014.db. [HE Jie, YANG Kun. China meteorological forcing dataset[DB/OC]. Cold and Arid Regions Science Data Center at Lanzhou, 2011. doi:10.3972/westdc.002.2014.db.] [25] 孟现勇. SWAT模型中国大气同化驱动数据集(CMADS V1.1) [DB/OC]. 寒区旱区科学数据中心,2016. doi:10.3972/westdc.002.2016.db. [MENG Xianyong. China meteorological assimilation driving datasets for the SWAT model version 1.1[DB/OC]. Cold and Arid Regions Science Data Center at Lanzhou, 2016. doi:10.3972/westdc.002.2016.db.] [26] 田丰,冉有华,张军,等. 河西走廊山洪灾害危险度区划[J]. 山地学报,2017,35(6):856-864. [TIAN Feng, RAN Youhua, ZHANG Jun, et al. Mountain torrent hazard division along Hexi Corridor [J]. Mountain Research, 2017,35(6): 856-864.] [27] 田丰,张军,冉有华,等. 基于多源数据整合的河西走廊经济带山洪灾害风险空间分布特征研究[J]. 干旱区资源与环境,2018,32(7):196-203. [TIAN Feng, ZHANG Jun, RAN Youhua, et al. Study on mountain torrent disaster risk spatial distribution characteristic in the Hexi Corridor based on multi-source data integration [J]. Journal of Arid Land Resources and Environment, 2018,32(7):196-203.] [28] ARGYRIOU A V, TEEUW R M, RUST D, SARRIS A. GIS multi-criteria decision analysis for assessment and mapping of neotectonic landscape deformation: A case study from Crete[J]. Geomorphology, 2016, 253:262-274. [29] 田丰,张军,冉有华,等. 甘肃陇南市泥石流灾害危险性及影响因子评价[J]. 灾害学,2017,32(3):197-203. [TIAN Feng, ZHANG Jun, RAN Youhua, et al. Assessment of debris flow disaster hazard and influence factors in longnan district [J]. Journal of Catastrophology, 2017,32(3):197-203.]
Outlines

/