Estimation of carbon sequestration capacity of Xinjiang terrestrial ecosystem based on natural climate solutions
Received date: 2024-01-23
Revised date: 2025-04-14
Online published: 2025-07-04
Natural climate solutions are a critical strategy in the land sector for mitigating climate change, with significant potential to enhance carbon storage and reduce greenhouse gas emissions. This study utilizes a straightforward empirical model to quantify the historical carbon sequestration contributions of national ecological restoration projects and proactive management measures in Xinjiang, China from 2000 to 2020. By examining 14 natural climate solutions pathways, the study estimates the potential for terrestrial carbon sequestration and greenhouse gas emission reductions in Xinjiang’s forest, grassland, and cropland ecosystems from 2020 to 2060. The findings indicate that the historical contribution of natural climate solutions in Xinjiang to mitigating climate change averaged an annual rate of 29.98 Tg CO2e·a-1 between 2000 and 2020, with forest restoration serving as a key carbon sequestration pathway over the last two decades. From 2020 to 2060, when food and fiber security are guaranteed, the estimated mitigation potential is projected to be 49.53 Tg CO2e·a-1, with forest ecosystems contributing a potential of 10.91 Tg CO2e·a-1, grassland ecosystems 10.13 Tg CO2e·a-1, and cropland ecosystems representing the largest potential at 28.31 Tg CO2e·a-1, thus accounting for 57.35% of total mitigation potential. Of the 14 pathways, conservation tillage presents the highest mitigation potential at 22.72 Tg CO2e·a-1 making up 46.06% of all pathways. Therefore, effective cropland management measures hold significant promise for enhancing carbon sequestration in Xinjiang in the future.
ZHANG Yifan , CHEN Yapeng , CHEN Yaning , LIANG Qixiang . Estimation of carbon sequestration capacity of Xinjiang terrestrial ecosystem based on natural climate solutions[J]. Arid Land Geography, 2025 , 48(7) : 1198 -1205 . DOI: 10.12118/j.issn.1000-6060.2024.053
| [1] | Griscom B W, Adams J, Ellis P W, et al. Natural climate solutions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): 11645-11650. |
| [2] | Duan H B, Zhou S, Jiang K J, et al. Assessing China’s efforts to pursue the 1.5 ℃ warming limit[J]. Science, 2021, 372(6540): 378-385. |
| [3] | Lu N, Tian H Q, Fu B J, et al. Biophysical and economic constraints on China’s natural climate solutions[J]. Nature Climate Change, 2022, 12(9): 847-853. |
| [4] | Field C B, Mach K J. Rightsizing carbon dioxide removal[J]. Science, 2017, 356(6339): 706-707. |
| [5] | Fargione J E, Bassett S, Boucher T, et al. Natural climate solutions for the United States[J]. Science Advances, 2018, 4(11): eaat1869, doi: 10.1126/sciadv.aat1869. |
| [6] | Roe S, Streck C, Beach R, et al. Land-based measures to mitigate climate change: Potential and feasibility by country[J]. Global Change Biology, 2021, 27(23): 6025-6058. |
| [7] | Bryan B A, Gao L, Ye Y Q, et al. China’s response to a national land-system sustainability emergency[J]. Nature, 2018, 559(7713): 193-204. |
| [8] | Li Q H, Chen Y N, Shen Y J, et al. Spatial and temporal trends of climate change in Xinjiang, China[J]. Journal of Geographical Sciences, 2011, 21(6): 1007-1018. |
| [9] | 杨海英, 阎顺, 于生华. 新疆森林公园的分布及旅游开发初探[J]. 干旱区地理, 2007, 30(1): 156-162. |
| [ Yang Haiying, Yan Shun, Yu Shenghua. Xinjiang forest park distribution and the tourism development[J]. Arid Land Geography, 2007, 30(1): 156-162. ] | |
| [10] | 赵万羽, 李建龙, 齐家国, 等. 新疆草地生态安全问题、现状与对策分析[J]. 干旱区研究, 2005, 22(1): 45-50. |
| [ Zhao Wanyu, Li Jianlong, Qi Jiaguo, et al. Analysis on the problems and actuality of the steppe ecological security in Xinjiang and the solving measures[J]. Arid Zone Research, 2005, 22(1): 45-50. ] | |
| [11] | 曹国豪, 张丽, 武红旗, 等. 新疆高标准农田空间分布特征及影响因素[J]. 西南农业学报, 2023, 36(4): 777-786. |
| [ Cao Guohao, Zhang Li, Wu Hongqi, et al. Spatial distribution characteristics and influencing factors of high-standard farmland in Xinjiang[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(4): 777-786. ] | |
| [12] | 韩楚翘, 郑江华, 王哲, 等. 基于PLUS-InVEST模型吐哈盆地陆地生态系统碳储量时空变化及多情景模拟[J]. 干旱区地理, 2024, 47(2): 260-269. |
| [ Han Chuqiao, Zheng Jianghua, Wang Zhe, et al. Spatiotemporal variation and multiscenario simulation of carbon storage in terrestrial ecosystems in the Turpan-Hami Basin based on PLUS-InVEST model[J]. Arid Land Geography, 2024, 47(2): 260-269. ] | |
| [13] | Zheng H, Guo L L, He B, et al. The great climate mitigation potential of cropland ecosystem management in China[J]. Earths Future, 2023, 11(9): e2023EF003586, doi: 10.1029/2023EF003586. |
| [14] | Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241): 1009-1013. |
| [15] | Lu F, Hu H F, Sun W J, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4039-4044. |
| [16] | Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831): 720-723. |
| [17] | Ge Q S, Dai J H, He F N, et al. Land use changes and their relations with carbon cycles over the past 300 a in China[J]. Science in China Series D: Earth Sciences, 2008, 51(6): 871-884. |
| [18] | 薛彩霞, 李园园, 胡超, 等. 中国保护性耕作净碳汇的时空格局[J]. 自然资源学报, 2022, 37(5): 1164-1182. |
| [ Xue Caixia, Li Yuanyuan, Hu Chao, et al. Study on spatio-temporal pattern of conservation tillage on net carbon sink in China[J]. Journal of Natural Resources, 2022, 37(5): 1164-1182. ] | |
| [19] | Sun W J, Canadell J G, Yu L J, et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture[J]. Global Change Biology, 2020, 26(6): 3325-3335. |
| [20] | 张雄智, 李帅帅, 刘冰洋, 等. 免耕与秸秆还田对中国农田固碳和作物产量的影响[J]. 中国农业大学学报, 2020, 25(5): 1-12. |
| [ Zhang Xiongzhi, Li Shuaishuai, Liu Bingyang, et al. Effects of no-till and residue retention on carbon sequestration and yield in China[J]. Journal of China Agricultural University, 2020, 25(5): 1-12. ] | |
| [21] | 徐丽, 于贵瑞, 何念鹏. 1980s—2010s中国陆地生态系统土壤碳储量的变化[J]. 地理学报, 2018, 73(11): 2150-2167. |
| [ Xu Li, Yu Guirui, He Nianpeng. Changes of soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s[J]. Acta Geographica Sinica, 2018, 73(11): 2150-2167. ] | |
| [22] | 于贵瑞, 朱剑兴, 徐丽, 等. 中国生态系统碳汇功能提升的技术途径: 基于自然解决方案[J]. 中国科学院院刊, 2022, 37(4): 490-501. |
| [ Yu Guirui, Zhu Jianxing, Xu Li, et al. Technological approaches to enhance ecosystem carbon sink in China: Nature-based solutions[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 490-501. ] | |
| [23] | Deng L, Liu G B, Shangguan Z P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: A synthesis[J]. Global Change Biology, 2014, 20(11): 3544-3556. |
| [24] | Drever C R, Cook-Patton S C, Akhter F, et al. Natural climate solutions for Canada[J]. Science Advances, 2021, 7(23): eabd6034, doi: 10.1126/sciadv.abd6034. |
| [25] | Anderson C M, DeFries R S, Litterman R, et al. Natural climate solutions are not enough[J]. Science, 2019, 363(6430): 933-934. |
/
| 〈 |
|
〉 |