Spatial pattern and evolution trend of agricultural grey water footprint intensity in the Yellow River Basin
Received date: 2024-08-07
Revised date: 2024-11-21
Online published: 2025-07-04
Effective management of agricultural water pollution is essential for addressing the water crisis and promoting sustainable regional development. This study introduces the agricultural grey water footprint intensity (AGWFI), which integrates the agricultural grey water footprint and local economic development levels to reflect agricultural pollution levels. It calculates the AGWFI for 112 prefecture-level cities in the Yellow River Basin of China from 2012 to 2021, thoroughly analyzing the spatial patterns and trends of AGWFI in the region. In addition, a quantile regression method is employed to examine the influencing factors. The findings reveal the following. (1) From 2012 to 2021, AGWFI significantly decreased across the Yellow River Basin and its upper, middle, and lower reaches, with a more significant reduction in the upper reaches compared to the middle and lower reaches. (2) The AGWFI displayed a distribution pattern characterized by high values in the west and low values in the east; the Gini coefficient for AGWFI in the basin and its upper, middle, and lower reaches was notably high and increasing, with intra- and inter-regional disparities as primary sources. Furthermore, the transfer of AGWFI primarily occurred between adjacent levels. (3) The level of agricultural economic development negatively affected the overall AGWFI in the Yellow River Basin and its upper, middle, and lower reaches. By contrast, the output share of the primary industry and the utilization rate of agricultural water resources positively influenced AGWFI. These research findings can serve as scientific references for the development of targeted agricultural water pollution management strategies in the Yellow River Basin.
CHENG Peng , PENG Haiyang , HOU Dingrong , SUN Mingdong , SONG Xiaowei . Spatial pattern and evolution trend of agricultural grey water footprint intensity in the Yellow River Basin[J]. Arid Land Geography, 2025 , 48(7) : 1185 -1197 . DOI: 10.12118/j.issn.1000-6060.2024.473
[1] | 李汝资, 白昳, 周云南, 等. 黄河流域水资源利用与经济增长脱钩及影响因素分解[J]. 地理科学, 2023, 43(1): 110-118. |
[ Li Ruzi, Bai Yi, Zhou Yunnan, et al. Decoupling and decomposition of driving factors of water resources utilization and economic growth in the Yellow River Basin[J]. Scientia Geographica Sinica, 2023, 43(1): 110-118. ] | |
[2] | Distefano T, Kelly S. Are we in deep water? Water scarcity and its limits to economic growth[J]. Ecological Economics, 2017, 142: 130-147. |
[3] | 金银雪. 全球变暖下的水资源危机[J]. 生态经济, 2020, 36(6): 5-8. |
[ Jin Yinxue. Water crisis under global warming[J]. Ecological Economy, 2020, 36(6): 5-8. ] | |
[4] | 梁赛, 吴晓慧, 李晓燕, 等. 社会经济驱动的环境水质问题研究进展[J]. 环境科学学报, 2023, 43(12): 93-101. |
[ Liang Sai, Wu Xiaohui, Li Xiaoyan, et al. Review on environmental water quality issues driven by socioeconomic activities[J]. Acta Scientiae Circumstantiae, 2023, 43(12): 93-101. ] | |
[5] | Kong Y, He W J, Zhang Z F, et al. Spatial-temporal variation and driving factors decomposition of agricultural grey water footprint in China[J]. Journal of Environmental Management, 2022, 318: 115601, doi: 10.1016/j.jenvman.2022.115601. |
[6] | 曾昭, 刘俊国. 北京市灰水足迹评价[J]. 自然资源学报, 2013, 28(7): 1169-1178. |
[ Zeng Zhao, Liu Junguo. Historical trend of grey water footprint of Beijing, China[J]. Journal of Natural Resources, 2013, 28(7): 1169-1178. ] | |
[7] | Hoekstra A Y, Chapagain A K, Aldaya M M, et al. The water footprint assessment manual: Setting the global standard[M]. London: Routledge, 2011. |
[8] | 楚天舒, 黄译萱, 赖世宣, 等. 中国各省市区种养业灰水足迹分析与评价[J]. 中国农业资源与区划, 2023, 44(11): 53-64. |
[ Chu Tianshu, Huang Yixuan, Lai Shixuan, et al. Analysis and evaluation of gray water footprint for planting-animal husbandry industry in provincial regions, China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(11): 53-64. ] | |
[9] | Yan Y A, Wang R, Chen S, et al. Three-dimensional agricultural water scarcity assessment based on water footprint: A study from a humid agricultural area in China[J]. Science of the Total Environment, 2023, 857: 159407, doi: 10.1016/j.scitotenv.2022.159407. |
[10] | 王丹阳, 李景保, 叶亚亚, 等. 基于不同受纳水体的湖南省农业灰水足迹分析[J]. 水资源保护, 2016, 32(4): 49-54. |
[ Wang Danyang, Li Jingbao, Ye Yaya, et al. Analysis of agricultural grey water footprint in Hunan Province based on different receiving water bodies[J]. Water Resources Protection, 2016, 32(4): 49-54. ] | |
[11] | 程鹏, 李叙勇, 孙明东. 基于河流参照状态的季风区域季节性农业灰水足迹核算方法与例证[J]. 环境科学学报, 2020, 40(9): 3453-3462. |
[ Cheng Peng, Li Xuyong, Sun Mingdong. Calculation method and illustration of seasonal agricultural grey water footprint in monsoon region based on river reference conditions[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3453-3462. ] | |
[12] | 杜慧娟, 王光耀, 冉光妍, 等. 面向SDGs的塔里木河流域农业灰水足迹分析[J]. 干旱区研究, 2023, 40(7): 1184-1193. |
[ Du Huijuan, Wang Guangyao, Ran Guangyan, et al. Agricultural gray water footprint in the Tarim River Basin using SDGs analysise[J]. Arid Zone Research, 2023, 40(7): 1184-1193. ] | |
[13] | 张鑫, 李磊, 甄志磊, 等. 时空与效率视角下汾河流域农业灰水足迹分析[J]. 中国环境科学, 2019, 39(4): 1502-1510. |
[ Zhang Xin, Li Lei, Zhen Zhilei, et al. Analysis of agricultural grey water footprint in Fenhe River Basin based on the perspective of space-time and efficiency[J]. China Environmental Science, 2019, 39(4): 1502-1510. ] | |
[14] | Li H Y, Wang Y F, Qin L J, et al. Effects of different slopes and fertilizer types on the grey water footprint of maize production in the black soil region of China[J]. Journal of Cleaner Production, 2020, 246: 119077, doi: 10.1016/j.jclepro.2019.119077. |
[15] | Barreto M D L P, Netto A M, Da Silva J P S, et al. Gray water footprint assessment for pesticide mixtures applied to a sugarcane crop in Brazil: A comparison between two models[J]. Journal of Cleaner Production, 2020, 276: 124254, doi: 10.1016/j.jclepro.2020. 124254. |
[16] | Xu C X, Liu Y, Fu T B. Spatial-temporal evolution and driving factors of grey water footprint efficiency in the Yangtze River Economic Belt[J]. Science of the Total Environment, 2022, 844: 156930, doi: 10.1016/j.scitotenv.2022.156930. |
[17] | 李胜楠, 王远, 罗进, 等. 福建省灰水足迹时空变化及驱动因素[J]. 生态学报, 2020, 40(21): 7952-7965. |
[ Li Shengnan, Wang Yuan, Luo Jin, et al. Spatio-temporal variations and driving factors of grey water footprint in Fujian Province[J]. Acta Ecologica Sinica, 2020, 40(21): 7952-7965. ] | |
[18] | 赵良仕. 中国省际灰水足迹强度的空间收敛性研究[J]. 辽宁师范大学学报(自然科学版), 2017, 40(4): 541-547. |
[ Zhao Liangshi. Study on spatial convergence of grey water footprint intensity on provincial scale in China[J]. Journal of Liaoning Normal University (Natural Science Edition), 2017, 40(4): 541-547. ] | |
[19] | 徐瑞璠, 赵敏娟, 高建中. 中国农业灰水足迹测度及时空分异研究[J]. 中国农业资源与区划, 2023, 44(10): 52-66. |
[ Xu Ruifan, Zhao Minjuan, Gao Jianzhong. Measurement and spatial-temporal variation of agricultural grey water footprint in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(10): 52-66. ] | |
[20] | Zhang L L, Zhang R, Wang Z Z, et al. Spatial heterogeneity of the impact factors on gray water footprint intensity in China[J]. Sustainability, 2020, 12(3): 865, doi: 10.3390/su12030865. |
[21] | He W J, Zhang K, Kong Y, et al. Reduction pathways identification of agricultural water pollution in Hubei Province, China[J]. Ecological Indicators, 2023, 153: 110464, doi: 10.1016/j.ecolind. 2023.110464. |
[22] | 徐春霞. 山东省金融服务业发展的空间非均衡及分布动态演进——基于银行业的实证分析[J]. 经济与管理评论, 2016, 32(6): 109-117. |
[ Xu Chunxia. The spatial disequilibrium and dynamic evolution of financial services industry development in Shandong Province: Based on an empirical analysis of banking industry[J]. Review of Economy and Management, 2016, 32(6): 109-117. ] | |
[23] | 陈明华, 刘华军, 孙亚男. 中国五大城市群金融发展的空间差异及分布动态: 2003—2013年[J]. 数量经济技术经济研究, 2016, 33(7): 130-144. |
[ Chen Minghua, Liu Huajun, Sun Yanan. Reseach on the spatial differences and distributional dynamic evolution of financial development of five megalopolises from 2003 to 2013 in China[J]. Journal of Quantitative & Technological Economics, 2016, 33(7): 130-144. ] | |
[24] | 陈明华, 张晓萌, 刘玉鑫, 等. 绿色TFP增长的动态演进及趋势预测——基于中国五大城市群的实证研究[J]. 南开经济研究, 2020(1): 20-44. |
[ Chen Minghua, Zhang Xiaomeng, Liu Yuxin, et al. Dynamic evolution and trend prediction of green TFP growth: Empirical research based on five urban agglomerations in China[J]. Nankai Economic Studies, 2020(1): 20-44. ] | |
[25] | 白天骄, 孙才志. 中国人均灰水足迹区域差异及因素分解[J]. 生态学报, 2018, 38(17): 6314-6325. |
[ Bai Tianjiao, Sun Caizhi. Regional inequality and factor decomposition of the per capita grey water footprint in China[J]. Acta Ecologica Sinica, 2018, 38(17): 6314-6325. ] | |
[26] | Chen J, Gao Y Y, Qian H, et al. Insights into water sustainability from a grey water footprint perspective in an irrigated region of the Yellow River Basin[J]. Journal of Cleaner Production, 2021, 316: 128329, doi: 10.1016/j.jclepro.2021.128329. |
[27] | 程鹏, 孙明东, 宋晓伟. 中国灰水足迹时空动态演进及驱动因素研究[J]. 生态环境学报, 2024, 33(5): 745-756. |
[ Cheng Peng, Sun Mingdong, Song Xiaowei. Study on the spatial and temporal dynamic evolution and driving factors of grey water footprint in China[J]. Ecology and Environmental Sciences, 2024, 33(5): 745-756. ] | |
[28] | 陈岩, 童国平, 王蕾. 淮河流域农业灰水足迹效率的时空分布与驱动模式[J]. 水资源保护, 2020, 36(6): 60-66, 85. |
[ Chen Yan, Tong Guoping, Wang Lei. Spatial-temporal distribution and driving models of agricultural grey water footprint efficiency in the Huai River Basin[J]. Water Resources Protection, 2020, 36(6): 60-66, 85. ] | |
[29] | Fu T B, Xu C X, Yang L H, et al. Measurement and driving factors of grey water footprint efficiency in Yangtze River Basin[J]. Science of the Total Environment, 2022, 802: 149587, doi: 10.1016/j.scitotenv.2021.149587. |
[30] | 王少剑, 谢紫寒, 王泽宏. 中国县域碳排放的时空演变及影响因素[J]. 地理学报, 2021, 76(12): 3103-3118. |
[ Wang Shaojian, Xie Zihan, Wang Zehong. The spatiotemporal pattern evolution and influencing factors of CO2 emissions at the county level of China[J]. Acta Geographica Sinica, 2021, 76(12): 3103-3118. ] | |
[31] | 毕茜, 于连超. 环境税的企业绿色投资效应研究——基于面板分位数回归的实证研究[J]. 中国人口·资源与环境, 2016, 26(3): 76-82. |
[ Bi Qian, Yu Lianchao. Relationship between environmental taxes and enterprise green investment behavior: A panel quantile regression approach[J]. China Population, Resources and Environment, 2016, 26(3): 76-82. ] | |
[32] | 刘志涛, 王少剑, 方创琳. 粤港澳大湾区生态系统服务价值的时空演化及其影响机制[J]. 地理学报, 2021, 76(11): 2797-2813. |
[ Liu Zhitao, Wang Shaojian, Fang Chuanglin. Spatiotemporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Geographica Sinica, 2021, 76(11): 2797-2813. ] | |
[33] | 刘佳琪, 周璐红, 席小雅. 2000—2020年黄河流域土地生态质量及其变化趋势预测[J]. 干旱区地理, 2023, 46(10): 1654-1662. |
[ Liu Jiaqi, Zhou Luhong, Xi Xiaoya. Land ecological quality and its change trend prediction in the Yellow River Basin from 2000 to 2020[J]. Arid Land Geography, 2023, 46(10): 1654-1662. ] | |
[34] | 黄万华, 王婷婷, 高红贵. 由“政区单元”河长制到“流域单元”河长制的转向——基于黄河流域河长制政策的准自然实验[J]. 东北财经大学学报, 2022(6): 74-84. |
[ Huang Wanhua, Wang Tingting, Gao Honggui. Transforming of river chief system from district unit to basin unit: A quasi-natural experiment based on the policy of river chief system in the Yellow River Basin[J]. Journal of Dongbei University of Finance and Economics, 2022(6): 74-84. ] | |
[35] | 罗静怡, 东梅. 中国粮食生产用水绿色效率与回弹效应研究——基于三阶段超效率SBM-Malmquist模型[J]. 干旱区地理, 2024, 47(9): 1508-1517. |
[ Luo Jingyi, Dong Mei. Green efficiency and rebound effect of water for grain production in China: Based on the three-stage super-efficiency SBM-Malmquist model[J]. Arid Land Geography, 2024, 47(9): 1508-1517. ] | |
[36] | 韩琴, 孙才志, 邹玮. 1998—2012年中国省际灰水足迹效率测度与驱动模式分析[J]. 资源科学, 2016, 38(6): 1179-1191. |
[ Han Qin, Sun Caizhi, Zou Wei. Grey water footprint efficiency measure and its driving pattern analysis on provincial scale in China from 1998 to 2012[J]. Resources Science, 2016, 38(6): 1179-1191. ] | |
[37] | Feng H Y, Sun F Y, Liu Y Y, et al. Mapping multiple water pollutants across China using the grey water footprint[J]. Science of the Total Environment, 2021, 785: 147255, doi: 10.1016/j.scitotenv.2021.147255. |
[38] | Dagum C. A new approach to the decomposition of the Gini income inequality ratio[M]. Berlin: Springer, 1998. |
[39] | 陈明华, 岳海珺, 郝云飞, 等. 黄河流域生态效率的空间差异、动态演进及驱动因素[J]. 数量经济技术经济研究, 2021, 38(9): 25-44. |
[ Chen Minghua, Yue Haijun, Hao Yunfei, et al. The spatial disparity, dynamic evolution and driving factors of ecological efficiency in the Yellow River Basin[J]. The Journal of Quantitative & Technical Economics, 2021, 38(9): 25-44. ] | |
[40] | 穆学青, 郭向阳, 明庆忠, 等. 黄河流域旅游生态安全的动态演变特征及驱动因素[J]. 地理学报, 2022, 77(3): 714-735. |
[ Mu Xueqing, Guo Xiangyang, Ming Qingzhong, et al. Dynamic evolution characteristics and driving factors of tourism ecological security in the Yellow River Basin[J]. Acta Geographica Sinica, 2022, 77(3): 714-735. ] | |
[41] | 刘帅宾, 杨山, 王钊. 基于人口流的中国省域城镇化空间关联特征及形成机制[J]. 地理学报, 2019, 74(4): 648-663. |
[ Liu Shuaibin, Yang Shan, Wang Zhao. Characteristics and formation mechanism of China’s provincial urbanization spatial correlation based on population flow[J]. Acta Geographica Sinica, 2019, 74(4): 648-663. ] | |
[42] | 刘统兵, 方瑜, 黄峰, 等. 中国广义农业水土资源匹配及利用状况动态评价[J]. 农业工程学报, 2023, 39(10): 56-65. |
[ Liu Tongbing, Fang Yu, Huang Feng. Dynamic evaluation of the matching degree and utilization condition of generalized agricultural water and arable land resources in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(10): 56-65. ] | |
[43] | Zhang X Y, Xiao Y A, Ramsey T S, et al. Decoupling agricultural grey water footprint from economic growth in the Yellow River Basin[J]. Water, 2024, 16(8): 1129, doi: 10.3390/w16081129. |
[44] | 徐瑞璠, 刘文新. 黄河流域农业灰水足迹与经济增长的关系研究——基于脱钩及回弹效应[J]. 中国农业资源与区划, 2023, 44(11): 79-91. |
[ Xu Ruifan, Liu Wenxin. Relationship between agricultural grey water footprint and economic growth in the Yellow River Basin: Based on decoupling and rebound effects[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(11): 79-91. ] | |
[45] | 郭玮, 胡西武. 黄河流域农业灰水足迹效率时空格局演变与驱动因素[J]. 水土保持通报, 2024, 44(2): 437-445. |
[ Guo Wei, Hu Xiwu. Spatial-temporal pattern evolution and driving factors of agricultural grey water footprint efficiency in Yellow River Basin[J]. Bulletin of Soil and Water Conservation, 2024, 44(2): 437-445. ] |
/
〈 |
|
〉 |