Spatiotemporal evolution characteristics of extreme precipitation events on the Loess Plateau from 1960 to 2023
Received date: 2024-08-03
Revised date: 2024-09-21
Online published: 2025-07-04
The Loess Plateau of China has been experiencing an increase in extreme climate events due to global warming. Understanding the spatiotemporal characteristics of extreme precipitation events in this region is crucial for disaster prevention. This study analyzes daily precipitation data from 111 meteorological stations across the Loess Plateau, spanning the years 1960 to 2023. Using detrended fluctuation analysis (DFA), we established thresholds for extreme precipitation events and examined their spatiotemporal characteristics through the Mann-Kendall test and other methods. The findings reveal the following. (1) Extreme precipitation thresholds at meteorological stations vary between 27.4 mm and 89.1 mm, with 54% of the stations exceeding a threshold of 50 mm. The average threshold values across different ecological regions range from 35.0 mm to 59.6 mm, exhibiting a gradient that is lower in the northwest and higher in the southeast. (2) The amount and intensity of extreme precipitation events increase from 10.6 mm·a-1 and 33.0 mm·d-1 in the northwest to 71.5 mm·a-1 and 133.0 mm·d-1 in the southeast, respectively. The frequency of their occurrence increases from 0.3 d·a-1 in the north to 0.8 d·a-1 in the south. The number of extreme precipitation days closely aligns with heavy rain days, particularly in the loess hilly gully B2 sub-region. (3) The loess tableland gully, earth-rocky mountainous, and river valley plain regions are identified as high-risk areas for extreme precipitation events and should be prioritized for disaster prevention and control. (4) Over the past 64 years, extreme precipitation events have shown distinct interannual variability, with an overall increase observed, particularly in July and August. (5) In the last decade, the loess tableland gully and loess hilly gully regions have seen increased precipitation amounts and frequencies of extreme events. By contrast, the declining trend of extreme precipitation events in the sandy land and irrigated agricultural regions has slowed, whereas both the earth-rocky mountainous and river valley plain regions experienced a sudden spike in extreme precipitation events in 2020. This study serves as a reference for disaster prevention and mitigation regarding extreme precipitation events across the different ecological regions of the Loess Plateau.
ZHANG Xinhan , ZHAO Wenting , JIAO Juying , MA Xiaowu , YANG Bo , LING Qi . Spatiotemporal evolution characteristics of extreme precipitation events on the Loess Plateau from 1960 to 2023[J]. Arid Land Geography, 2025 , 48(7) : 1153 -1166 . DOI: 10.12118/j.issn.1000-6060.2024.461
| [1] | 江志红, 丁裕国, 陈威霖. 21世纪中国极端降水事件预估[J]. 气候变化研究进展, 2007, 3(4): 202-207. |
| [ Jiang Zhihong, Ding Yuguo, Chen Weilin. Projection of precipitation extremes for the 21st century over China[J]. Climate Change Research, 2007, 3(4): 202-207. ] | |
| [2] | 袁文德, 郑江坤, 董奎. 1962—2012年西南地区极端降水事件的时空变化特征[J]. 资源科学, 2014, 36(4): 766-772. |
| [ Yuan Wende, Zheng Jiangkun, Dong Kui. Spatial and temporal variation in extreme precipitation events in southwestern China during 1962—2012[J]. Resources Science, 2014, 36(4): 766-772. ] | |
| [3] | Liu B J, Chen J F, Chen X H, et al. Uncertainty in determining extreme precipitation thresholds[J]. Journal of Hydrology, 2013, 503: 233-245. |
| [4] | Watters P A, Martin F. A method for estimating long-range power law correlations from the electroencephalogram[J]. Biological Psychology, 2004, 66(1): 79-89. |
| [5] | 杨萍, 侯威, 封国林. 基于去趋势波动分析方法确定极端事件阈值[J]. 物理学报, 2008, 57(8): 5333-5342. |
| [ Yang Ping, Hou Wei, Feng Guolin. Determining the threshold of extreme events with detrended fluctuation analysis[J]. Acta Physica Sinica, 2008, 57(8): 5333-5342. ] | |
| [6] | 刘丙军, 伍丽丽, 陆文秀. 基于DFA方法的珠江流域极端降水阈值研究[J]. 中山大学学报(自然科学版), 2013, 52(1): 136-141. |
| [ Liu Bingjun, Wu Lili, Lu Wenxiu. Researches on DFA-based extreme precipitation threshold in the Pearl River Basin[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(1): 136-141. ] | |
| [7] | 郑祚芳, 张秀丽, 曹鸿兴, 等. 用去趋势涨落分析研究北京气候的长程变化特征[J]. 地球物理学报, 2007(2): 420-424. |
| [ Zheng Zuofang, Zhang Xiuli, Cao Hongxing, et al. Characteristics of long-term climate change in Beijing with detrended fluctuation analysis[J]. Chinese Journal of Geophysics, 2007(2): 420-424. ] | |
| [8] | 郑腾飞, 郭建茂, 尹继福, 等. 基于DFA法的江苏省极端降水时空分布特征研究[J]. 自然灾害学报, 2012, 21(4): 76-83. |
| [ Zheng Tengfei, Guo Jianmao, Yin Jifu, et al. DFA-based research on spatiotemporal distribution of extreme precipitations in Jiangsu Province[J]. Journal of Natural Disasters, 2012, 21(4): 76-83. ] | |
| [9] | Chi X X, Yin Z E, Wang X, et al. Spatiotemporal variations of precipitation extremes of China during the past 50 years (1960—2009)[J]. Theoretical and Applied Climatology, 2016, 124(3-4): 555-564. |
| [10] | Wang L Y, Chen S F, Zhu W B, et al. Spatiotemporal variations of extreme precipitation and its potential driving factors in China’s north-south transition zone during 1960—2017[J]. Atmospheric Research, 2021, 252: 105429, doi: 10.1016/j.atmosres.2020.105429. |
| [11] | 新华网. 山西严重洪涝灾害已致175万余人受灾[EB/OL]. [2021-10-10]. . |
| [ Xinhua News Agency. Severe floods and waterlogging in Shanxi have affected more than 1.75 million people[EB/OL]. [2021-10-10]. . ] | |
| [12] | Alexander L V, Tapper N, Zhang X, et al. Climate extremes: Progress and future directions[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2009, 29(3): 317-319. |
| [13] | Mass C, Skalenakis A, Warner M. Extreme precipitation over the west coast of North America: Is there a trend?[J]. Journal of Hydrometeorology, 2011, 12(2): 310-318. |
| [14] | 卢珊, 胡泽勇, 王百朋, 等. 近56年中国极端降水事件的时空变化格局[J]. 高原气象, 2020, 39(4): 683-693. |
| [ Lu Shan, Hu Zeyong, Wang Baipeng, et al. Spatio-temporal patterns of extreme precipitation events over China in recent 56 years[J]. Plateau Meteorology, 2020, 39(4): 683-693. ] | |
| [15] | 景丞, 陶辉, 王艳君, 等. 基于区域气候模式CCLM的中国极端降水事件预估[J]. 自然资源学报, 2017, 32(2): 266-277. |
| [ Jing Cheng, Tao Hui, Wang Yanjun, et al. Projection of extreme precipitation events in China based on regional climate model CCLM[J]. Journal of Natural Resources, 2017, 32(2): 266-277. ] | |
| [16] | 王志福, 钱永甫, 林惠娟, 等. 区域海气耦合模式对我国极端降水模拟分析[J]. 高原气象, 2008, 27(1): 113-121. |
| [ Wang Zhifu, Qian Yongfu, Lin Huijuan, et al. Analysis of numerical simulation on extreme precipitation in China using a coupled regional ocean-atmosphere model[J]. Plateau Meteorology, 2008, 27(1): 113-121. ] | |
| [17] | Zhang J J, Gao G Y, Fu B J, et al. A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China[J]. Hydrology and Earth System Sciences, 2020, 24(2): 809-826. |
| [18] | 卢珊, 胡泽勇, 付春伟, 等. 黄土高原夏季极端降水及其成因分析[J]. 高原气象, 2022, 41(1): 241-254. |
| [ Lu Shan, Hu Zeyong, Fu Chunwei, et al. Characteristics and possible causes for extreme precipitation in summer over the Loess Plateau[J]. Plateau Meteorology, 2022, 41(1): 241-254. ] | |
| [19] | 李志, 郑粉莉, 刘文兆. 1961—2007年黄土高原极端降水事件的时空变化分析[J]. 自然资源学报, 2010, 25(2): 291-299. |
| [ Li Zhi, Zheng Fenli, Liu Wenzhao. Analyzing the spatial-temporal changes of extreme precipitation events in the Loess Plateau from 1961 to 2007[J]. Journal of Natural Resources, 2010, 25(2): 291-299. ] | |
| [20] | 王国桢, 晏宏, 刘成程, 等. 1960—2017年黄土高原极端降水的时空演化及其对环流变化的响应[J]. 地球环境学报, 2023, 14(5): 588-602. |
| [ Wang Guozhen, Yan Hong, Liu Chengcheng, et al. Spatio-temporal evolution of extreme precipitation in Loess Plateau during 1960—2017 and its response to atmospheric circulation changes[J]. Journal of Earth Environment, 2023, 14(5): 588-602. ] | |
| [21] | 周晓红, 赵景波. 黄土高原气候变化与植被恢复[J]. 干旱区研究, 2005, 22(1): 116-119. |
| [ Zhou Xiaohong, Zhao Jingbo. Climatic change and vegetation restoration on the Loess Plateau[J]. Arid Zone Research, 2005, 22(1): 116-119. ] | |
| [22] | 裴宏泽, 赵亚超, 张廷龙. 2000—2020年黄土高原NEP时空格局与驱动力[J]. 干旱区研究, 2023, 40(11): 1833-1844. |
| [ Pei Hongze, Zhao Yachao, Zhang Tinglong. Analysis of spatial and temporal patterns and drivers of local regional NEP in the Loess Plateau from 2000 to 2020[J]. Arid Zone Research, 2023, 40(11): 1833-1844. ] | |
| [23] | 杨艳芬, 王兵, 王国梁, 等. 黄土高原生态分区及概况[J]. 生态学报, 2019, 39(20): 7389-7397. |
| [ Yang Yanfen, Wang Bing, Wang Guoliang, et al. Ecological regionalization and overview of the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(20): 7389-7397. ] | |
| [24] | Sen P K. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389. |
| [25] | Hirsch R M, Slack J R. A nonparametric trend test for seasonal data with serial dependence[J]. Water Resources Research, 1984, 20(6): 727-732. |
| [26] | 井乐, 李建平, 张翼, 等. 黄土高原不同土地利用方式下土壤干层差异[J]. 草业科学, 2018, 35(8): 1829-1835. |
| [ Jing Le, Li Jianping, Zhang Yi, et al. Study on dry soil layers under different land-use systems in the Loess Plateau[J]. Pratacultural Science, 2018, 35(8): 1829-1835. ] | |
| [27] | 赵安周, 朱秀芳, 潘耀忠. 1965—2013年黄土高原地区极端降水事件时空变化特征[J]. 北京师范大学学报(自然科学版), 2017, 53(1): 43-50. |
| [ Zhao Anzhou, Zhu Xiufang, Pan Yaozhong. Spatiotemporal variations of extreme precipitation events in the Loess Plateau from 1965 to 2013[J]. Journal of Beijing Normal University (Natural Science Edition), 2017, 53(1): 43-50. ] | |
| [28] | 王万忠, 焦菊英, 魏艳红, 等. 近半个世纪以来黄土高原侵蚀产沙的时空分异特征[J]. 泥沙研究, 2015, 40(2): 9-16. |
| [ Wang Wanzhong, Jiao Juying, Wei Yanhong, et al. Spatial-temporal differentiation characteristics of erosion sediment yield on the Loess Plateau during the recent half century[J]. Journal of Sediment Research, 2015, 40(2): 9-16. ] | |
| [29] | 张光辉. 从土壤侵蚀角度诠释泥沙连通性[J]. 水科学进展, 2021, 32(2): 295-308. |
| [ Zhang Guanghui. Understanding sediment connectivity from soil erosion perspective[J]. Advances in Water Science, 2021, 32(2): 295-308. ] | |
| [30] | 央视网. 陕西大荔持续降雨致49.1万亩农田被淹紧急转移1.8万余名群众[EB/OL]. [2021-10-10]. . |
| [ CCTV network. Continuous rainfall in Dali, Shaanxi Province has caused 491000 mu of farmland to be flooded and urgently evacuated over 18000 people[EB/OL]. [2021-10-10]. . ] | |
| [31] | 杜世雄, 吴瑞英, 孙怀卫, 等. 中巴经济走廊极端降水事件分析[J]. 农业工程学报, 2022, 38(增刊1): 152-160. |
| [ Du Shixiong, Wu Ruiying, Sun Huaiwei, et al. Analysis of extreme precipitation events along the China-Pakistan economic corridor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(Suppl. 1): 152-160. ] | |
| [32] | 杨东, 程军奇, 李小亚, 等. 甘肃黄土高原各级降水和极端降水时空分布特征[J]. 生态环境学报, 2012, 21(9): 1539-1547. |
| [ Yang Dong, Cheng Junqi, Li Xiaoya, et al. The variation characteristic of different levels of precipitation and extreme precipitation in Loess Plateau of Gansu Province region in recent 52 years[J]. Ecology and Environmental Sciences, 2012, 21(9): 1539-1547. ] | |
| [33] | 李双双, 孔锋, 韩鹭, 等. 陕北黄土高原区极端降水时空变化特征及其影响因素[J]. 地理研究, 2020, 39(1): 140-151. |
| [ Li Shuangshuang, Kong Feng, Han Lu, et al. Spatiotemporal variability of extreme precipitation and influencing factors on the Loess Plateau in northern Shaanxi Province[J]. Geographical Research, 2020, 39(1): 140-151. ] | |
| [34] | 黎珩, 朱冰冰, 边熇, 等. 1970—2020年黄土高原水蚀风蚀交错区极端降水时空变化研究及驱动因素分析[J]. 干旱区地理, 2024, 47(4): 539-548. |
| [ Li Heng, Zhu Bingbing, Bian He, et al. Temporal and spatial changes in extreme precipitation and its driving factors in the water-wind erosion crisscross region of the Loess Plateau from 1970 to 2020[J]. Arid Land Geography, 2024, 47(4): 539-548. ] | |
| [35] | 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589. |
| [ Gao Tao, Xie Li’an. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years[J]. Advances in Earth Science, 2014, 29(5): 577-589. ] | |
| [36] | 刘国彬, 上官周平, 姚文艺, 等. 黄土高原生态工程的生态成效[J]. 中国科学院院刊, 2017, 32(1): 11-19. |
| [ Liu Guobin, Shangguan Zhouping, Yao Wenyi, et al. Ecological effects of soil conservation in Loess Plateau[J]. Chinese Academy of Sciences, 2017, 32(1): 11-19. ] | |
| [37] | 张宝庆, 田磊, 赵西宁, 等. 植被恢复对黄土高原局地降水的反馈效应研究[J]. 中国科学: 地球科学, 2021, 51(7): 1080-1091. |
| [ Zhang Baoqing, Tian Lei, Zhao Xining, et al. Study on the feedback effect of vegetation restoration on local precipitation on the Loess Plateau[J]. Science China (Earth Sciences), 2021, 51(7): 1080-1091. ] | |
| [38] | 安彬, 肖薇薇, 刘宇峰, 等. 1955—2021年黄土高原地区相对湿度时空演变规律[J]. 干旱区地理, 2023, 46(12): 1939-1950. |
| [ An Bin, Xiao Weiwei, Liu Yufeng, et al. Temporal and spatial evolution of relative humidity in the Loess Plateau during 1955—2021[J]. Arid Land Geography, 2023, 46(12): 1939-1950. ] | |
| [39] | Tabari H. Climate change impact on flood and extreme precipitation increases with water availability[J]. Scientific Reports, 2020, 10(1): 13768, doi: 10.1038/s41598-020-70816-2. |
| [40] | 卢燕. 2021年全球气候不能承受之变[J]. 绿色中国, 2021(23): 16-21. |
| [ Lu Yan. Unbearable changes in global climate in 2021[J]. Green China, 2021(23): 16-21. ] |
/
| 〈 |
|
〉 |