Carbon Emissions

Spatiotemporal heterogeneity and its influencing factors of agricultural carbon emission efficiency in Xinjiang

  • LIU Haijun ,
  • ZHANG Haihong ,
  • YAN Junjie ,
  • LI Xiang ,
  • LI Gaofeng
Expand
  • 1. Key Laboratory of Microbial Resources Protection, Development and Utilization, Yili Normal University, Yining 835000, Xinjiang, China
    2. School of Resources and Environment, Yili Normal University, Yining 835000, Xinjiang, China
    3. School of Geographical Sciences, Southwest University, Chongqing 400715, China

Received date: 2024-06-03

  Revised date: 2024-07-22

  Online published: 2025-05-13

Abstract

The promotion of low-carbon agricultural development necessitates in-depth research into the spatiotemporal heterogeneity of agricultural carbon emission efficiency and its influencing factors. This will facilitate the acceleration of Xinjiang’s agricultural economic development while driving the green transformation of agricultural production. This study focused on 14 prefectures and cities in Xinjiang from 2000 to 2020 to assess agricultural carbon emission efficiency. The analysis was conducted using the SBM model of nonexpected output and the Malmquist index. The spatial characteristics of agricultural carbon emission efficiency were further examined using the spatial autocorrelation model, and the Tobit model was applied to explore factors influencing efficiency. The findings suggested the following. (1) From 2000 to 2020, the agricultural carbon emission efficiency in Xinjiang followed a “slow-fast-slow” development pattern, with significant inter-regional disparities. (2) In 2000, the Tacheng Prefecture exhibited a low-high agglomeration pattern in case of agricultural carbon emission efficiency. By 2007, the Changji Hui Autonomous Prefecture transitioned to a high-high agglomeration pattern. Further, by 2014, Turpan City and the Changji Hui Autonomous Prefecture were both exhibited high-high agglomeration. In 2020, the Bayingol Mongolian Autonomous Prefecture, Hami City, and Changji Hui Autonomous Prefecture were situated in a low-high agglomeration. Thus, a general decline in regions exhibiting high-high agglomeration and an increase in those with low-high agglomeration was observed. (3) The extent of arable land scale and the overall advancement of the agricultural economy positively affected the agricultural carbon emission efficiency. Further, the agricultural industry structure, crop cultivation structure, and effective irrigation rate negatively affected the agricultural carbon emission efficiency. Thus, this study highlights the spatial and temporal heterogeneity of agricultural carbon emission efficiency and its influencing factors in Xinjiang. The findings are expected to provide theoretical support and empirical evidence for the sustainable development of agriculture in arid areas.

Cite this article

LIU Haijun , ZHANG Haihong , YAN Junjie , LI Xiang , LI Gaofeng . Spatiotemporal heterogeneity and its influencing factors of agricultural carbon emission efficiency in Xinjiang[J]. Arid Land Geography, 2025 , 48(5) : 866 -878 . DOI: 10.12118/j.issn.1000-6060.2024.345

References

[1] 张帆, 蔡颖, 邓祥征, 等. 作物-牲畜-生物能源综合系统对中国农业源温室气体的影响评估[J]. 地理学报, 2024, 79(1): 28-44.
  [Zhang Fan, Cai Ying, Deng Xiangzheng, et al. Assessment of the impact of the integrated crop-livestock-bioenergy system on agricultural greenhouse gases in China[J]. Acta Geographica Sinica, 2024, 79(1): 28-44. ]
[2] 赵先超, 彭竞霄, 胡艺觉, 等. 基于夜间灯光数据的湖南省县域碳排放时空格局及影响因素研究[J]. 生态科学, 2022, 41(1): 91-99.
  [Zhao Xianchao, Peng Jingxiao, Hu Yijue, et al. Spatial-temporal pattern and influence factors of county carbon emissions in Hunan Province based on nightlight data[J]. Ecological Science, 2022, 41(1): 91-99. ]
[3] 马欣雨, 穆月英. 碳视角下的粮食生产环境技术效率评价——基于超效率SBM-Undesirable模型[J]. 中国农业资源与区划, 2024, 45(3): 26-35.
  [Ma Xinyu, Mu Yueying. Evaluating the environmental efficiency of grain production from the perspective of carbon: Based on super-efficiency SBM-Undesirable model[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2024, 45(3): 26-35. ]
[4] 陈宇斌, 王森, 陆杉. 农产品贸易对农业碳排放的影响——兼议数字乡村发展的门槛效应[J]. 华中农业大学学报(社会科学版), 2022(6): 45-57.
  [Chen Yubin, Wang Sen, Lu Shan. The impact of agricultural products trade on agricultural carbon emissions: The threshold effect of digital rural development[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2022(6): 45-57. ]
[5] 李秋萍, 李长建, 肖小勇, 等. 中国农业碳排放的空间效应研究[J]. 干旱区资源与环境, 2015, 29(4): 30-35.
  [Li Qiuping, Li Changjian, Xiao Xiaoyong, et al. The spatial effects of agricultural carbon emissions in China: Based on spatial Durbin model[J]. Journal of Arid Land Resources and Environment, 2015, 29(4): 30-35. ]
[6] West T O, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1-3): 217-232.
[7] 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269-273.
  [Dong Hongmin, Li Yu’e, Tao Xiuping, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273. ]
[8] Lal R. Carbon emission from farm operations[J]. Environment International, 2004, 30(7): 981-990.
[9] 张恒硕, 李绍萍, 彭民. 中国农村能源消费碳排放区域非均衡性及驱动因素动态识别[J]. 中国农村经济, 2022(1): 112-134.
  [Zhang Hengshuo, Li Shaoping, Peng Min. Regional imbalance of carbon emissions from China’s rural energy consumption and dynamic identification of driving factors[J]. Chinese Rural Economy, 2022(1): 112-134. ]
[10] 田云, 李波, 张俊飚. 我国农地利用碳排放的阶段特征及因素分解研究[J]. 中国地质大学学报(社会科学版), 2011, 11(1): 59-63.
  [Tian Yun, Li Bo, Zhang Junbiao. Research on stage characteristics and factor decomposition of agricultural land carbon emission in China[J]. Journal of China University of Geosciences (Social Sciences Edition), 2011, 11(1): 59-63. ]
[11] 田云, 林子娟. 中国省域农业碳排放效率与经济增长的耦合协调[J]. 中国人口·资源与环境, 2022, 32(4): 13-22.
  [Tian Yun, Lin Zijuan. Coupling coordination between agricultural carbon emission efficiency and economic growth at provincial level in China[J]. China Population, Resources, and Environment, 2022, 32(4): 13-22. ]
[12] Zhang M N, Li L S, Cheng Z H. Research on carbon emission efficiency in the Chinese construction industry based on a three-stage DEA-Tobit model[J]. Environmental Science and Pollution research International, 2021, 28(37): 51120-51136.
[13] 田云, 张俊飚, 吴贤荣, 等. 碳排放约束下的中国农业生产率增长与分解研究[J]. 干旱区资源与环境, 2015, 29(11): 7-12.
  [Tian Yun, Zhang Junbiao, Wu Xianrong, et al. Growth and sources of agricultural productivity in China under carbon emissions constraint[J]. Journal of Arid Land Resources and Environment, 2015, 29(11): 7-12. ]
[14] 吴昊玥, 黄瀚蛟, 何宇, 等. 中国农业碳排放效率测度、空间溢出与影响因素[J]. 中国生态农业学报, 2021, 29(10): 1762-1773.
  [Wu Haoyue, Huang Hanjiao, He Yu, et al. Measurement, spatial spillover and influencing factors of agricultural carbon emissions efficiency in China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1762-1773. ]
[15] 尚杰, 吉雪强, 石锐, 等. 中国农业碳排放效率空间关联网络结构及驱动因素研究[J]. 中国生态农业学报, 2022, 30(4): 543-557.
  [Shang Jie, Ji Xueqiang, Shi Rui, et al. Structure and driving factors of spatial correlation network of agricultural carbon emission efficiency in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 543-557. ]
[16] 吴贤荣, 张俊飚, 田云, 等. 中国省域农业碳排放: 测算、效率变动及影响因素研究——基于DEA-Malmquist指数分解方法与Tobit模型运用[J]. 资源科学, 2014, 36(1): 129-138.
  [Wu Xianrong, Zhang Junbiao, Tian Yun, et al. Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors[J]. Resources Science, 2014, 36(1): 129-138. ]
[17] 杜娅明, 白永平, 梁建设, 等. 黄河流域旅游业碳排放效率综合测度及影响因素研究[J]. 干旱区地理, 2023, 46(12): 2074-2085.
  [Du Yaming, Bai Yongping, Liang Jianshe, et al. Comprehensive measurement and influencing factors of carbon emission efficiency of tourism in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(12): 2074-2085. ]
[18] 解春艳, 黄传峰, 徐浩. 环境规制下中国农业技术效率的区域差异与影响因素——基于农业碳排放与农业面源污染双重约束的视角[J]. 科技管理研究, 2021, 41(15): 184-190.
  [Xie Chunyan, Huang Chuanfeng, Xu Hao. Regional disparity and influencing factors of agricultural technology efficiency in China: Based on dual constraint of agricultural carbon and agricultural non-point source pollution[J]. Science and Technology Management Research, 2021, 41(15): 184-190. ]
[19] 田云, 王梦晨. 湖北省农业碳排放效率时空差异及影响因素[J]. 中国农业科学, 2020, 53(24): 5063-5072.
  [Tian Yun, Wang Mengchen. Research on spatial and temporal difference of agricultural carbon emission efficiency and its influencing factors in Hubei Province[J]. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072. ]
[20] 朱巧娴, 梅昀, 陈银蓉, 等. 基于碳排放测算的湖北省土地利用结构效率的DEA模型分析与空间分异研究[J]. 经济地理, 2015, 35(12): 176-184.
  [Zhu Qiaoxian, Mei Yun, Chen Yinrong, et al. Regional differentiation characteristics and optimization of the structural efficiency of land use in Hubei Province based on the carbon emissions[J]. Economic Geography, 2015, 35(12): 176-184. ]
[21] 李明, 肖海峰. 畜产品进口对畜牧业碳排放的影响及其空间效应[J]. 中国农业大学学报, 2024, 29(2): 176-191.
  [Li Ming, Xiao Haifeng. Impact of livestock products import on carbon emissions from livestock industry and its spatial effect[J]. Journal of China Agricultural University, 2024, 29(2): 176-191. ]
[22] 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203-208.
  [Duan Huaping, Zhang Yue, Zhao Jianbo, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203-208. ]
[23] Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509.
[24] Feng Y X, He S W, Li G D. Interaction between urbanization and the eco-environment in the Pan-Third Pole region[J]. Science of the Total Environment, 2021, 789: 148011, doi: 10.1016/j.scitotenv.2021.148011.
[25] Zhang X D, Zhang J, Yang C B. Spatio-temporal evolution of agricultural carbon emissions in China, 2000—2020[J]. Sustainability, 2023, 15(4): 3347, doi: 10.3390/su15043347.
[26] Chen Y, Su X Y, Zhou Q. Study on the spatiotemporal evolution and influencing factors of urban resilience in the Yellow River Basin[J]. International Journal of Environmental Research and Public Health, 2021, 18(19): 10231, doi: 10.3390/ijerph181910231.
[27] 夏文浩, 王铭扬, 姜磊. 新疆农业碳排放强度时空变化趋势与收敛分析[J]. 干旱区地理, 2023, 46(7): 1145-1154.
  [Xia Wenhao, Wang Mingyang, Jiang Lei. Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1145-1154. ]
[28] 王太祥, 王腾, 吴林海. 西北干旱区农地利用碳排放与农业经济增长的响应关系[J]. 中国农业资源与区划, 2017, 38(4): 170-176.
  [Wang Taixiang, Wang Teng, Wu Linhai. Relationship between agricultural land carbon emission and economic development in the arid region of northwest China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(4): 170-176. ]
Outlines

/