Spatio-temporal analysis of multi-layered soil moisture deficit and its influencing factors in the oases at the eastern foothill of Helan Mountains
Received date: 2024-04-16
Revised date: 2024-10-21
Online published: 2025-04-18
In the oases at the eastern foothill of Helan Mountains, Ningxia, China, known as the “Jiangnan on the Frontier”, soil moisture is a critical limiting factor affecting ecological preservation and high-quality socio-economic development. Based on soil moisture data from ten layers (0-100 cm), multidimensional analyses were conducted on the spatiotemporal distribution, evolution characteristics, and influencing factors of soil moisture deficit in this region using methods such as spatiotemporal trend analysis and partial regression analysis. This approach enhances the understanding of the correlation and interactive effects of soil moisture changes at different depths. The results indicated that the degree of soil moisture deficit in various layers had intensified over the past 20 years. As soil depth increased, soil moisture in the northern and southern oases exhibited distinct multidimensional spatial distribution patterns: deficit-surplus-deficit-surplus-deficit and deficit-surplus-deficit, respectively. Additionally, they followed spatiotemporal evolution trends of wetting-drying-wetting and wetting-drying. The influences of precipitation (PRE) and vapor pressure deficit (VPD) on soil moisture across different layers gradually weakened, while the influence of temperature (TMP) first strengthened and then weakened, and the influence of the normalized difference vegetation index (NDVI) gradually increased. In summary, soil moisture at different depths and its influencing factors exhibited regular and multidimensional spatiotemporal variation patterns. The 0-10 cm layer was strongly positively influenced by PRE, whereas the 10-30 cm and 30-100 cm layers were significantly negatively affected by TMP and NDVI, respectively.
HOU Ying , LIU Wenhui , CHU Yang , MA Xiaojuan , YAO Shiyu , NI Tongxin . Spatio-temporal analysis of multi-layered soil moisture deficit and its influencing factors in the oases at the eastern foothill of Helan Mountains[J]. Arid Land Geography, 2025 , 48(4) : 649 -660 . DOI: 10.12118/j.issn.1000-6060.2024.242
[1] | Feng H H, Wang S, Li S J, et al. Satellite-based re-examination of global soil moisture variation[J/OL]. Advances in Space Research. [2024-12-14]. https://doi.org/10.1016/j.asr.2024.12.030. |
[2] | Wang S, Lü K, Ma J, et al. A multi-source data fusion method to retrieve soil moisture dynamics and its influencing factors analysis in the ecological zone of the eastern margin of the Tibetan Plateau[J]. Ecological Indicators, 2024, 169: 112877, doi: 10.1016/j.ecolind.2024.112877. |
[3] | Liu B B, Yu P T, Zhang X, et al. Soil moisture shapes the responses of Quercus wutaishansea forest stand transpiration to potential evapotranspiration[J]. Journal of Hydrology, 2025, 652: 132679, doi: 10.1016/j.jhydrol.2025.132679. |
[4] | Kamran M, Yamamoto K. Evolution and use of remote sensing in ecological vulnerability assessment: A review[J]. Ecological Indicators, 2023, 148: 110099, doi: 10.1016/j.ecolind.2023.110099. |
[5] | Dash S K, Sinha R. Space-time dynamics of soil moisture and groundwater in an agriculture-dominated critical zone observatory (CZO) in the Ganga Basin, India[J]. Science of the Total Environment, 2022, 851: 158231, doi: 10.1016/j.scitotenv.2022.158231. |
[6] | Zhang Z Y, Chen X, Jiang K, et al. Dynamics and interactions of soil moisture and temperature in semi-arid regions of northern China[J]. Journal of Arid Environments, 2025, 227: 105327, doi: 10.1016/j.jaridenv.2025.105327. |
[7] | 赵亚楠, 于露, 周玉蓉, 等. 宁夏东部荒漠草原灌丛引入对土壤水分动态及亏缺的影响[J]. 生态学报, 2020, 40(4): 1305-1315. |
[Zhao Yanan, Yu Lu, Zhou Yurong, et al. Soil moisture dynamics and deficit of desert grassland with anthropogenic introduced shrub encroachment in the eastern Ningxia, China[J]. Acta Ecologica Sinica, 2020, 40(4): 1305-1315.] | |
[8] | 张维福, 张呈春, 马思怡, 等. 宁夏河东沙地土壤水分动态变化[J]. 水土保持通报, 2024, 44(4): 97-106. |
[Zhang Weifu, Zhang Chengchun, Ma Siyi, et al. Dynamic changes of soil moisture in sandy lands in east of Yellow River in Ningxia[J]. Bulletin of Soil and Water Conservation, 2024, 44(4): 97-106.] | |
[9] | 韩新生, 刘广全, 许浩, 等. 宁夏南部半干旱黄土区3种土地利用类型的土壤水分时空变化特征[J]. 水土保持学报, 2022, 36(6): 250-259. |
[Han Xinsheng, Liu Guangquan, Xu Hao, et al. Temporal and spatial variation characteristics of soil moisture under three land use types in the semi-arid Loess region of southern Ningxia[J]. Journal of Soil and Water Conservation, 2022, 36(6): 250-259.] | |
[10] | 吴振宗, 毕健, 高艺菲, 等. 近20 a中国中东部部分农业区土壤水分变化[J]. 兰州大学学报(自然科学版), 2022, 58(6): 774-781, 788. |
[Wu Zhenzong, Bi Jian, Gao Yifei, et al. Changes in soil moisture in parts of the central and eastern agricultural regions of China in the recent 20 years[J]. Journal of Lanzhou University (Natural Sciences Edition), 2022, 58(6): 774-781, 788.] | |
[11] | 董金义, 罗敏, 孟凡浩, 等. 蒙古高原土壤水分时空格局演变特征分析[J]. 水土保持研究, 2024, 31(2): 110-121. |
[Dong Jinyi, Luo Min, Meng Fanhao, et al. Spatiotemporal evolution of soil moisture and its driving forces in the Mongolian Plateau[J]. Research of Soil and Water Conservation, 2024, 31(2): 110-121.] | |
[12] | Wang Y Q, Hu W, Sun H, et al. Soil moisture decline in China’s monsoon loess critical zone: More a result of land-use conversion than climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(15): e1972840175, doi: 10.1073/pnas.2322127121. |
[13] | Han L, Chang Y Q, Chen R, et al. Response of soil moisture to vegetation and trade-off analysis in the hilly area of the Loess Plateau, China[J]. Ecological Indicators, 2022, 142: 109273, doi: 10.1016/j.ecolind.2022.109273. |
[14] | Ge F C, Xu M X, Li B B, et al. Afforestation reduced the deep profile soil water sustainability on the semiarid Loess Plateau[J]. Forest Ecology and Management, 2023, 544: 121240, doi: 10.1016/j.foreco.2023.121240. |
[15] | Miao Y B, Niu J Z, Wang D, et al. Greening of China and possible vegetation effects on soil moisture[J]. Ecological Indicators, 2024, 158: 111382, doi: 10.1016/j.ecolind.2023.111382. |
[16] | Gupta A, Rico Medina A, Ca?o Delgado A I. The physiology of plant responses to drought[J]. Science, 2020, 368: 266-269. |
[17] | Wang Q, Zhang D K, Zhou X J, et al. Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China[J]. Agricultural Water Management, 2022, 266: 107594, doi: 10.1016/j.agwat.2022.107594. |
[18] | 李轩, 过志峰, 吴门新, 等. 华北地区土壤水分的时空变化特征[J]. 应用生态学报, 2021, 32(12): 4203-4211. |
[Li Xuan, Guo Zhifeng, Wu Menxin, et al. Temporal and spatial variations of soil moisture in north China[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4203-4211.] | |
[19] | Rakesh C J, Dongryeol R, Patrick N J L, et al. Seasonal forecast of soil moisture over Mediterranean-climate forest catchments using a machine learning approach[J]. Journal of Hydrology, 2023, 619: 129307, doi: 10.1016/j.jhydrol.2023.129307. |
[20] | A Y L, Jiang X M, Wang Y T, et al. Study on spatio-temporal simulation and prediction of regional deep soil moisture using machine learning[J]. Journal of Contaminant Hydrology, 2023, 258: 104235, doi: 10.1016/j.jconhyd.2023.104235. |
[21] | 张亚楠, 宋小宁, 冷佩, 等. 近20年黄河流域夏季土壤水分时空变化特征及驱动因素分析[J]. 中国科学院大学学报, 2024, 41(4): 477-489. |
[Zhang Yanan, Song Xiaoning, Leng Pei, et al. Temporal and spatial variation of summer soil moisture and its driving factors in Yellow River Basin during the last 20 years[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(4): 477-489.] | |
[22] | Xu L, Gao G Y, Wang X F, et al. Distinguishing the effects of climate change and vegetation greening on soil moisture variability along aridity gradient in the drylands of northern China[J]. Agricultural and Forest Meteorology, 2023, 343: 109786, doi: 10.1016/j.agrformet.2023.109786. |
[23] | 丁思聪, 邱博, 李倩. 不同土壤湿度产品对长江中下游极端气候事件响应过程分析[J]. 大气科学学报, 2024, 47(5): 701-712. |
[Ding Sicong, Qiu Bo, Li Qian. Response of soil moisture to extreme climate events based on various datasets[J]. Transactions of Atmospheric Sciences, 2024, 47(5): 701-712.] | |
[24] | 上官微, 李清亮, 石高松. 基于站点观测的中国1 km土壤湿度日尺度数据集(2000—2022)[DB/OL]. 国家青藏高原科学数据中心. https://cstr.cn/18406.11.Terre.tpdc.272415. |
[Shangguan Wei, Li Qingliang, Shi Gaosong. A 1-km daily soil moisture dataset over China based on in-situ measurement (2000—2022)[DB/OL]. National Tibetan Plateau Data Center. https://cstr.cn/18406.11.Terre.tpdc.272415.] | |
[25] | Li Q L, Shi G S, Shangguan W, et al. A 1?km daily soil moisture dataset over China using in situ measurement and machine learning[J]. Earth System Science Data, 2022, 14(12): 5267-5286. |
[26] | 王征. 陕西省土壤湿度时空变化特征及其驱动力分析[J]. 城市勘测, 2023, 38(5): 71-76. |
[Wang Zheng. Analysis of spatial and temporal variation of soil moisture in Shanxi Province based on TVDI[J]. Urban Geotechnical Investigation & Surveying, 2023, 38(5): 71-76.] | |
[27] | 吴宏玥, 杜灵通, 乔成龙, 等. 基于蒸散演变驱动的宁夏绿洲平原生态系统耗水变化[J]. 水土保持学报, 2023, 37(3): 172-180, 189. |
[Wu Hongyue, Du Lingtong, Qiao Chenglong, et al. Water consumption of ecosystem driven by evapotranspiration evolution in Ningxia oasis plain[J]. Journal of Soil and Water Conservation, 2023, 37(3): 172-180, 189.] | |
[28] | Ali S, Ran J J, Luan Y, et al. The GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater storage to investigate local-scale variations in the North China Plain[J]. Science of the Total Environment, 2024, 908: 168239, doi: 10.1016/j.scitotenv.2023.168239. |
[29] | Ling Z H, Shu L C, Wang D K, et al. Assessment and projection of the groundwater drought vulnerability under different climate scenarios and land use changes in the Sanjiang Plain, China[J]. Journal of Hydrology: Regional Studies, 2023, 49: 101498, doi: 10.1016/j.ejrh.2023.101498. |
[30] | 周洪奎, 武建军, 李小涵, 等. 基于同化数据的标准化土壤湿度指数监测农业干旱的适宜性研究[J]. 生态学报, 2019, 39(6): 2191-2202. |
[Zhou Hongkui, Wu Jianjun, Li Xiaohan, et al. Suitability of assimilated data-based standardized soil moisture index for agricultural drought monitoring[J]. Acta Ecologica Sinica, 2019, 39(6): 2191-2202.] | |
[31] | Guo L, Zhu B W, Jin H, et al. Spatial-temporal variation characteristics and influencing factors of soil moisture in the Yellow River Basin using ESA CCI SM products[J]. Atmosphere, 2022, 13(6): 962, doi: 10.3390/atmos13060962. |
[32] | 拉巴, 边巴次仁, 拉珍, 等. 青藏高原土壤水分时空变化特征及其与气候变化的关系研究[J]. 高原科学研究, 2023, 7(1): 1-8. |
[Lhaba, Bianba Ciren, Lhazhen, et al. Spatiotemporal variation characteristics of soil moisture and its relationship with climate change on the Qinghai-Tibet Plateau[J]. Plateau Science Research, 2023, 7(1): 1-8.] | |
[33] | Hu J L, Li S S, Liu X F, et al. Identifying the short-duration and long-duration types of summer soil moisture drought on the Loess Plateau and their teleconnections[J]. Atmospheric Research, 2025, 315: 107915, doi: 10.1016/j.atmosres.2025.107915. |
[34] | Fan K K, Slater L, Zhang Q, et al. Climate warming accelerates surface soil moisture drying in the Yellow River Basin, China[J]. Journal of Hydrology, 2022, 615: 128735, doi: 10.1016/j.jhydrol2022.128735. |
[35] | 成龙, 吴波, 贾晓红, 等. 基于连续观测数据的毛乌素沙地生长季土壤水分动态及其对降雨的响应[J]. 干旱区地理, 2024, 47(4): 648-661. |
[Cheng Long, Wu Bo, Jia Xiaohong, et al. Dynamic change of soil moisture and its response to rainfall during the growing season in Mu Us Sandy Land based on continuous observation data[J]. Arid Land Geography, 2024, 47(4): 648-661.] | |
[36] | Meng F H, Luo M, Sa C L, et al. Quantitative assessment of the effects of climate, vegetation, soil and groundwater on soil moisture spatiotemporal variability in the Mongolian Plateau[J]. Science of the Total Environment, 2022, 809: 152198, doi: 10.1016/j.scitotenv.2021.152198. |
[37] | Chen S S, Zhang S L, Wu S J. Diverse spatiotemporal patterns of vapor pressure deficit and soil moisture across China[J]. Journal of Hydrology: Regional Studies, 2024, 52: 101712, doi: 10.1016/j.ejrh.2024.101712. |
[38] | Jiang F X, Xie X H, Wang Y B, et al. Vegetation greening intensified transpiration but constrained soil evaporation on the Loess Plateau[J]. Journal of Hydrology, 2022, 614: 128514, doi: 10.1016/j.jhydrol.2022.128514. |
[39] | 滕健, 常军, 翟永波, 等. 黄淮海平原NDVI的时空变化特征及其对地表水储量的响应[J/OL]. 西安理工大学学报.[2024-10-17]. http://kns.cnki.net/kcms/detail/61.1294.N.20241017.1510.006.ht-ml. |
[Teng Jian, Chang Jun, Zhai Yongbo, et al. Spatiotemporal variation characteristics of NDVI in the Huang-Huai-Hai Plain and its response to surface water storage[J/OL]. Journal of Xi’an University of Technology.[2024-10-17]. http://kns.cnki.net/kcms/detail/61.1294.N.20241017.1510.006.html.] | |
[40] | Yang X Y, Zhang Z P, Guan Q Y, et al. Coupling mechanism between vegetation and multi-depth soil moisture in arid-semiarid area: shift of dominant role from vegetation to soil moisture[J]. Forest Ecology and Management, 2023, 546: 121323, doi: 10.1016/j.foreco.2023.121323.] |
[41] | 於嘉禾, 王卫光, 陈泽峰. 全球旱地饱和水汽压差和根区土壤水分变化对植被生产力的影响及其成因[J]. 生态学报, 2024, 44(11): 4808-4819. |
[Yu Jiahe, Wang Weiguang, Chen Zefeng. Influences of vapor pressure deficit and root-zone soil moisture changes on vegetation productivity and its causes across global drylands[J]. Acta Ecologica Sinica, 2024, 44(11): 4808-4819.] | |
[42] | Cai G C, Wankmüller F, Ahmed M A, et al. How the interactions between atmospheric and soil drought affect the functionality of plant hydraulics[J]. Plant, Cell & Environment, 2023, 46(3): 733-735. |
[43] | Noguera I, Vicente-Serrano S M, Pe?a-Angulo D, et al. Assessment of vapor pressure deficit variability and trends in Spain and possible connections with soil moisture[J]. Atmospheric Research, 2023, 285: 106666, doi: 10.1016/j.atmosres.2023.106666. |
[44] | Shekhar A, Buchmann N, Humphrey V, et al. More than three-fold increase in compound soil and air dryness across Europe by the end of 21st century[J]. Weather and Climate Extremes, 2024, 44: 100666, doi: 10.1016/j.wace.2024.100666. |
[45] | 侯迎, 黄欣慧, 褚阳, 等. 黄河“几字弯”大气水分亏缺及其影响因素的时空变化特征[J]. 中国环境科学, 2025, 45(2): 637-647. |
[Hou Ying, Huang Xinhui, Chu Yang, et al. Spatiotemporal variability of atmospheric moisture deficit and its influencing factors in the “Jizi Bay” of the Yellow River[J]. China Environmental Science, 2025, 45(2): 637-647.] |
/
〈 |
|
〉 |