Climatology and Hydrology

Characteristics, sources and health risk assessment of PM2.5-bound heavy metals and polycyclic aromatic hydrocarbons pollution in middle Tianshan Mountains

  • CHAI Mingchen ,
  • XU Guojie ,
  • ZHEN Zhongxiu ,
  • YIN Yan ,
  • ZHENG Bohua ,
  • CHEN Kui ,
  • LI Bin ,
  • LI Yuanyuan
Expand
  • 1. China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2. School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
    3. Weather Modification Office of Xinjiang Uygur Autonomous Region, Urumqi 830002, Xinjiang, China
    4. Xinjiang Weather Modification Engineering Technology Research Centre, Urumqi 830002, Xinjiang, China
    5. School of Emergency Management, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2024-03-19

  Revised date: 2024-05-08

  Online published: 2025-03-14

Abstract

To investigate the pollution characteristics of PM2.5 in the middle Tianshan Mountains, PM2.5 samples were collected in Wulasitai region of the middle Tianshan Mountains from July to September 2019. Heavy metal contents were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS), while polycyclic aromatic hydrocarbons (PAHs) were examined using gas chromatography-mass spectrometry (GC-MS). The study explored the sources and health effects of heavy metals and PAHs in PM2.5. The key results are as follows: (1) Concentrations of heavy metals and PAHs during summer and autumn in the middle Tianshan Mountains were relatively low. The average concentration levels of each element were: Fe>Cu>Zn>Pb>Mn>Cr>As>V>Rb>Ni>Co>Se>Cd>Tl. The total average heavy metal concentration was 238.50 ng·m-3, with Fe (139.90 ng·m-3) and Cu (78.72 ng·m-3) being dominant, while other elements were below 10 ng·m-3. The total average concentration of PAHs was 1.37 ng·m-3, with 3-ring, 4-ring, and 5-7 ring PAHs concentration accounting for 3.59%, 32.34%, and 64.07%, respectively. (2) During the observation period, PM2.5 was influenced by long-distance transport from the west and short-distance transport from the north and west. It may also have been affected by local valley wind and boundary layer changes. (3) Positive matrix factorization (PMF) identified key pollution sources, including natural gas combustion and petroleum sources (28.56%), vehicle emissions and coal burning (28.46%), biomass burning and industrial pollution (16.14%), non-ferrous metal smelting (14.32%), and dust (12.52%). (4) Direct inhalation of PM2.5 posed a carcinogenic risk to adults and children due to heavy metals and PAHs, with Cr, Co, As, and Se identified as high-risk substances. Non-carcinogenic health risks were relatively low.

Cite this article

CHAI Mingchen , XU Guojie , ZHEN Zhongxiu , YIN Yan , ZHENG Bohua , CHEN Kui , LI Bin , LI Yuanyuan . Characteristics, sources and health risk assessment of PM2.5-bound heavy metals and polycyclic aromatic hydrocarbons pollution in middle Tianshan Mountains[J]. Arid Land Geography, 2025 , 48(3) : 391 -404 . DOI: 10.12118/j.issn.1000-6060.2024.181

References

[1] 曹军骥. 我国PM2.5污染现状与控制对策[J]. 地球环境学报, 2012, 3(5): 1030-1036.
  [Cao Junji. Pollution status and control strategies of PM2.5 in China[J]. Journal of Earth Environment, 2012, 3(5): 1030-1036. ]
[2] Luan T, Guo X L, Guo L J, et al. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing[J]. Atmospheric Chemistry and Physics, 2018, 18(1): 203-225.
[3] Wang J D, Zhao B, Wang S X, et al. Particulate matter pollution over China and the effects of control policies[J]. Science of the Total Environment, 2017, 584-585: 426-447.
[4] 焦美玲, 韩晶, 曹彦超, 等. 庆阳市空气污染及气象因子影响特征分析[J]. 干旱区地理, 2024, 47(6): 932-941.
  [Jiao Meiling, Han Jing, Cao Yanchao, et al. Characteristics of air pollution and meteorological factors in Qingyang City[J]. Arid Land Geography, 2024, 47(6): 932-941. ]
[5] 杨婧, 郭晓爽, 滕曼, 等. 我国大气细颗粒物中金属污染特征及来源解析研究进展[J]. 环境化学, 2014, 33(9): 1514-1521.
  [Yang Jing, Guo Xiaoshuang, Teng Man, et al. A review of atmospheric fine particulate matter associated trace metal pollutants in China[J]. Environmental Chemistry, 2014, 33(9): 1514-1521. ]
[6] Singh D K, Gupta T. Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic Plain[J]. Science of the Total Environment, 2016, 550: 80-94.
[7] 张晓茹, 孔少飞, 银燕, 等. 亚青会期间南京大气PM2.5中重金属来源及风险[J]. 中国环境科学, 2016, 36(1): 1-11.
  [Zhang Xiaoru, Kong Shaofei, Yin Yan, et al. Sources and risk assessment of heavy metals in ambient PM2.5 during Youth Asian Game period in Nanjing[J]. China Environmental Science, 2016, 36(1): 1-11. ]
[8] Pateraki S, Asimakopoulos D N, Maggos T, et al. Chemical characterization, sources and potential health risk of PM2.5 and PM1 pollution across the Greater Athens Area[J]. Chemosphere, 2020, 241: 125026, doi: 10.1016/j.chemosphere.2019.125026.
[9] 黄菊. 西北典型城市大气颗粒物组分污染特征及其健康风险评估[D]. 兰州: 兰州大学, 2021.
  [Huang Ju. Pollution characteristics and health risk assessment of atmospheric particulate matter in northwest China[D]. Lanzhou: Lanzhou University, 2021. ]
[10] 姚馨, 赵义, 安琪, 等. 哈尔滨冬季积雪中多环芳烃同大气污染物的关系及其潜在源区分析[J]. 环境科学学报, 2023, 43(5): 341-352.
  [Yao Xin, Zhao Yi, An Qi, et al. Relationships between polycyclic aromatic hydrocarbons in snow cover and atmospheric pollutants and their potential source areas in Harbin[J]. Acta Scientiae Circumstantiae, 2023, 43(5): 341-352. ]
[11] 洪纲, 周静博, 姜建彪, 等. 空气细颗粒物(PM2.5)的污染特征及其来源解析研究进展[J]. 河北工业科技, 2015, 32(1): 64-71.
  [Hong Gang, Zhou Jingbo, Jiang Jianbiao, et al. Research progress of characteristics and source apportionment of air fine particle pollution (PM2.5)[J]. Hebei Journal of Industrial Science and Technology, 2015, 32(1): 64-71. ]
[12] 苏都尔·克热木拉, 伊丽米热·阿布达力木, 迪丽努尔·塔力甫. 乌鲁木齐市采暖期大气PM2.5-10、PM2.5中重金属和多环芳烃的分布及其相关性[J]. 环境化学, 2013, 32(4): 706-707.
  [Keremula Suduer, Abudalimu Yilimire, Talifu Dilinuer. Distribution and correlation of heavy metals, and polycyclic aromatic hydrocarbons in atmospheric PM2.5-10 and PM2.5 during the heating period in Urumqi[J]. Environmental Chemistry, 2013, 32(4): 706-707. ]
[13] 李琦路, 吴锦涛, 张颖, 等. 新乡市机动车排放对道路灰尘中重金属与多环芳烃污染的影响[J]. 环境科学, 2019, 40(12): 5258-5264.
  [Li Qilu, Wu Jintao, Zhang Ying, et al. Effects of vehicle emissions on heavy metals and polycyclic aromatic hydrocarbons pollution in road dust in Xinjiang[J]. Environmental Science, 2019, 40(12): 5258-5264. ]
[14] Cui H T, Lu Y L, Zhou Y Q, et al. Spatial variation and driving mechanism of polycyclic aromatic hydrocarbons (PAHs) emissions from vehicles in China[J]. Journal of Cleaner Production, 2022, 336: 130210, doi: 10.1016/j.jclepro.2021.130210.
[15] 李春华, 朱飙, 杨金虎, 等. 中国区域气候干湿与土壤湿度变化特征及其差异性分析[J]. 干旱区地理, 2024, 47(10): 1674-1687.
  [Li Chunhua, Zhu Biao, Yang Jinhu, et al. Difference of changing characteristics analysis between climate dry-wet and soil moisture in China[J]. Arid Land Geography, 2024, 47(10): 1674-1687. ]
[16] 谢运兴, 唐晓, 郭宇宏, 等. 新疆大气颗粒物的时空分布特征[J]. 中国环境监测, 2019, 35(1): 6-36.
  [Xie Yunxing, Tang Xiao, Guo Yuhong, et al. Spatial and temporal distribution of atmospheric particulate matter in Xinjiang[J]. Environmental Monitoring in China, 2019, 35(1): 6-36. ]
[17] 魏明娜, 谢海燕, 邓文叶, 等. 乌鲁木齐市采暖期与非采暖期大气PM2.5和PM10中水溶性离子特征分析[J]. 安全与环境学报, 2017, 17(5): 1986-1991.
  [Wei Mingna, Xie Haiyan, Deng Wenye, et al. Water-soluble ions pollution characteristics of the atmospheric particles (PM2.5 and PM10) in Urumqi during the heating and non-heating periods[J]. Journal of Safety and Environment, 2017, 17(5): 1986-1991. ]
[18] 石小翠, 帕丽达·牙合甫, 宋思醒. 乌鲁木齐市PM2.5中水溶性离子特征及来源分析[J]. 环境工程技术学报, 2021, 11(6): 1049-1056.
  [Shi Xiaocui, Yahefu Palida, Song Sixing. Characteristics and source analysis of water-soluble ions in PM2.5 in Urumqi City[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1049-1056. ]
[19] 石小翠, 帕丽达·牙合甫, 宋思醒, 等. 乌鲁木齐市大气PM2.5中元素特征及风险评价[J]. 环境科学与技术, 2021, 44(5): 171-178.
  [Shi Xiaocui, Yahefu Palida, Song Sixing, et al. Element characteristics and risk assessment of atmospheric PM2.5 in Urumqi[J]. Environmental Science & Technology, 2021, 44(5): 171-178. ]
[20] 王雨晴, 王胜利, 谷超, 等. 伊犁河谷夏季PM2.5中金属元素以源为导向的健康风险评价[J]. 环境化学, 2023, 42(12): 4161-4170.
  [Wang Yuqing, Wang Shengli, Gu Chao, et al. Source-oriented health risk assessment of PM2.5 bound metal elements during summer in Ili Valley[J]. Environmental Chemistry, 2023, 42(12): 4161-4170. ]
[21] Wang W, Ding X, Turap Y S, et al. Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China[J]. Science of the Total Environment, 2020, 39: 139518, doi: 10.1016/j.scitotenv.2020.139518.
[22] 胡锋, 王兴磊, 刘云庆, 等. 伊宁市夏季大气PM2.5中多环芳烃污染特征及健康风险评价[J]. 环境与健康杂志, 2017, 34(6): 533-535.
  [Hu Feng, Wang Xinglei, Liu Yunqing, et al. Characteristics and health risk assessment of polycyclic aromatic hydrocarbons pollution in PM2.5 of Yining City in summer[J]. Journal of Environment and Health, 2017, 34(6): 533-535. ]
[23] 万瑜, 曹兴, 崔玉玲, 等. 中天山北坡山区近30 a气候变化特征[J]. 干旱气象, 2012, 30(4): 575-582.
  [Wan Yu, Cao Xing, Cui Yuling, et al. Analysis of climate change tendency in northern piedmont of middle Tianshan Mountain over recent 30 years[J]. Journal of Arid Meteorology, 2012, 30(4): 575-582. ]
[24] Zhang H H, Li R, Huang C P, et al. Seasonal variation of aerosol iron solubility in coarse and fine particles at an inland city in northwestern China[J]. Atmospheric Chemistry and Physics, 2023, 23: 3543-3559.
[25] Santos A G, Regis A C D, Rocha G O, et al. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air[J]. Journal of Chromatography A, 2016, 1435: 6-17.
[26] Cui L K, Song X Q, Zhong G Q. Comparative analysis of three methods for HYSPLIT atmospheric trajectories clustering[J]. Atmosphere, 2021, 12(6): 698, doi: 10.3390/atmos12060698.
[27] 杨红, 谢海燕, 鲍昱璇, 等. 阿克苏市春季PM10和PM2.5输送路径及潜在源分析[J]. 四川环境, 2022, 41(3): 71-78.
  [Yang Hong, Xie Haiyan, Bao Yuxuan, et al. Analysis of transmission paths and potential sources of PM10 and PM2.5 in Aksu in spring[J]. Sichuan Environment, 2022, 41(3): 71-78. ]
[28] 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006, 25(1): 65-72.
  [Zhang Xiuzhi, Bao Zhengyu, Tang Junhong. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 2006, 25(1): 65-72. ]
[29] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 330-482.
  [China National Environmental Monitoring Centre. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990: 330-482. ]
[30] 赵禹, 赵寒森, 刘拓, 等. 西北地区土地质量地球化学调查进展与主要成果[J]. 西北地质, 2022, 55(3): 140-154.
  [Zhao Yu, Zhao Hansen, Liu Tuo, et al. Progresses and main achievements of geochemical survey of land quality in northwest China[J]. Northwestern Geology, 2022, 55(3): 140-154. ]
[31] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515.
[32] Pio C A, Alves C A, Duarte A C. Identification, abundance and origin of atmospheric organic particulate matter in a Portuguese rural area[J]. Atmospheric Environment, 2001, 35(8): 1365-1375.
[33] Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126.
[34] Xu A, Mao Y, Su Y W, et al. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Huanggang City, central China[J]. Atmospheric Environment, 2021, 252: 118296, doi: 10.1016/j.atmosenv.2021.118296.
[35] T/CSES 36-2021. 区域环境污染健康风险评估技术导则[S]. 北京: 中国环境科学学会, 2021.
  [T/CSES 36-2021. Technical guidelines for health risk assessment of regional environmental pollution[S]. Beijing: Chinese Society for Environmental Sciences, 2021. ]
[36] Ma L X, Li B, Liu Y P, et al. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in northern China[J]. Journal of Cleaner Production, 2020, 264: 121673, doi: 10.1016/j.jclepro.2020.121673.
[37] United States Environmental Protection Agency. Regional screening levels (RSLs)[EB/OL]. [2024-03-14]. https://www.epa.gov/risk/regional-screening-levels-rsls.
[38] Fadel M, Ledoux F, Afif C, et al. Human health risk assessment for PAHs, phthalates, elements, PCDD/Fs, and DL-PCBs in PM2.5 and for NMVOCs in two East-Mediterranean urban sites under industrial influence[J]. Atmospheric Pollution Research, 2022, 13(1): 101261, doi: 10.1016/j.apr.2021.101261.
[39] GB 3095-2012. 环境空气质量标准[S]. 北京: 中国环境科学出版社, 2012.
  [GB 3095-2012. Environmental air quality standards[S]. Beijing: China Environmental Science Press, 2012. ]
[40] Meng Y, Li R, Zhao Y L, et al. Chemical characterization and sources of PM2.5 at a high-alpine ecosystem in the southeast Tibetan Plateau, China[J]. Atmospheric Environment, 2020, 235: 117645, doi: 10.1016/j.atmosenv.2020.117645.
[41] 李慧明, 钱新, 冷湘梓, 等. 南京市PM2.5中金属元素污染特征及健康风险[J]. 环境监控与预警, 2021, 13(1): 7-13.
  [Li Huiming, Qian Xin, Leng Xiangzi, et al. Pollution characteristics and health risks of metal elements in PM2.5 from Nanjing[J]. Environmental Monitoring and Forewarning, 2021, 13(1): 7-13. ]
[42] 刘婷, 赵长盛, 陈庆锋, 等. 济南市春季大气颗粒物重金属的分布特征[J]. 环境科技, 2020, 33(6): 53-57.
  [Liu Ting, Zhao Changsheng, Chen Qingfeng, et al. Distribution characteristics of heavy metals in air particulates in spring in Jinan[J]. Environmental Science and Technology, 2020, 33(6): 53-57. ]
[43] 朱焱涛. 西安市北郊大气细颗粒物重金属特征及健康风险评价研究[D]. 西安: 西安建筑科技大学, 2022.
  [Zhu Yantao. Heavy metal characteristics and health risk assessment of fine particulate matter in the northern suburb of Xi’an City[D]. Xi’an: Xi’an University of Architecture and Technology, 2022. ]
[44] Wu Y F, Shi Y, Zhang N, et al. Pollution levels, characteristics, and sources of polycyclic aromatic hydrocarbons in atmospheric particulate matter across the Hu line in China: A review[J]. Environmental Chemistry Letters, 2021, 19: 3821-3836.
[45] 高洪亮. 黄河三角洲背景点PM2.5中多环芳烃及其衍生物的污染特征和来源解析[D]. 济南: 山东大学, 2021.
  [Gao Hongliang. Source appointment and pollution characteristics of PAHs and their derivatives in PM2.5 at the Yellow River Delta background area[D]. Jinan: Shandong University, 2021. ]
[46] 雷佩玉, 张峰, 郑晶利, 等. 2016—2018年西安市两城区PM2.5中多环芳烃污染特征分析[J]. 卫生研究, 2020, 49(5): 765-774.
  [Lei Peiyu, Zhang Feng, Zheng Jingli, et al. Analysis of polycyclic aromatic hydrocarbons pollution characteristics in PM2.5 in two districts of Xi’an City from 2016 to 2018[J]. Journal of Hygiene Research, 2020, 49(5): 765-774. ]
[47] 胡芸迪, 杜小红, 戚发秋, 等. 西北某工业区周围空气采暖期与非采暖期PM2.5中多环芳烃污染特征、来源分析及人群健康风险评估[J]. 现代预防医学, 2022, 49(2): 227-231, 235.
  [Hu Yundi, Du Xiaohong, Qi Faqiu, et al. Pollution characteristics, source analysis and population health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 during heating and non-heating periods in an industrial area in northwest China[J]. Modern Preventive Medicine, 2022, 49(2): 227-231, 235. ]
[48] 张煜娴, 曹芳, 贾小芳, 等. 中国主要背景区域冬季PM2.5中非极性有机化合物组成及来源解析[J]. 地球与环境, 2022, 50(1): 45-57.
  [Zhang Yuxian, Cao Fang, Jia Xiaofang, et al. Composition and source apportionment of non-polar organic compounds in PM2.5 in winter in major background regions of China[J]. Earth and Environment, 2022, 50(1): 45-57. ]
[49] Zhang J M, Yang L X, Mellouki A, et al. Diurnal concentrations, sources, and cancer risk assessments of PM2.5-bound PAHs, NPAHs, and OPAHs in urban, marine and mountain environments[J]. Chemosphere, 2018, 209: 147-155.
[50] 甄钟秀. 华北平原大气多环芳烃的观测和模拟研究[D]. 南京: 南京信息工程大学, 2024.
  [Zhen Zhongxiu. Observation and simulation of atmospheric polycyclic[D]. Nanjing: Nanjing University of Information Science and Technology, 2024. ]
[51] Su T N, Li Z Q, Kahn R. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: Regional pattern and influencing factors[J]. Atmospheric Chemistry and Physics, 2018, 18(21): 15921-15935.
[52] Wu S P, Wang X H, Yan J M, et al. Diurnal variations of particle-bound PAHs at a traffic site in Xiamen, China[J]. Aerosol and Air Quality Research, 2010, 10(5): 497-506.
[53] Keyte I J, Harrison R M, Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons: A review[J]. Chemical Society Reviews, 2013, 42(24): 9333-9391.
[54] 马迎慧. 南京及周边地区不同环境PM2.5污染特征及来源解析[D]. 南京: 南京信息工程大学, 2017.
  [Ma Yinghui. Pollution characteristics and source apportionment of PM2.5 in Nanjing and its surrounding areas[D]. Nanjing: Nanjing University of Information Science and Technology, 2017. ]
[55] 凌再莉, 宋世杰, 黄韬. 新疆博斯腾湖地区PM10中多环芳烃的污染特征、来源及健康风险评价[J]. 地球与环境, 2024, 52(1): 29-40.
  [Ling Zaili, Song Shijie, Huang Tao. Pollution, sources, and health risk assessment of PM10-bound polycyclic aromatic hydrocarbons in Bosten Lake area, Xinjiang[J]. Earth and Environment, 2024, 52(1): 29-40. ]
[56] 苏都尔·克热木拉. 乌鲁木齐南部PM2.5对质粒DNA的损伤剂量及与PAHs、重金属之间的相关性研究[D]. 乌鲁木齐: 新疆大学, 2014.
  [Kerelula Suduer. Study on the correlation between the toxic dosages of PM2.5 on plasmid DNA and PAHs, heavy metals in southern Urumqi atmospheric[D]. Urumqi: Xinjiang University, 2014. ]
Outlines

/