Regional Development

Optimization of “ecological-production-living” spaces for urban areas in Loess Plateau hilly and gully region by the dual-guidance between constraints and growth: A case of the central urban area of Mizhi County

  • JIA Ruonan ,
  • WU Zuobin
Expand
  • 1. Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
    2. Xi’an Jianda Institute of Urban Planning and Design Co., Ltd, Xi’an 710055, Shaanxi, China

Received date: 2024-04-29

  Revised date: 2024-08-27

  Online published: 2025-02-25

Abstract

In the context of stringent ecological constraints in the Loess Plateau hilly and gully region and the growing demand for urban development, optimizing ecological-production-living (EPL) spaces is crucial for promoting the rational allocation of resources. This study employs an integrated research method combining ecological base identification with urban growth simulation, guided by ecological constraints and urban growth patterns in the Loess Plateau hilly and gully region. Using the central urban area of Mizhi County, Shaanxi Province, China as a case study, the ecological base conditions were evaluated using the minimum cumulative resistance (MCR) model. The Markov and FLUS models were applied to simulate the spatial distribution of EPL spaces in the urban area for 2035. Subsequently, intense, moderate, and weak conflict zones between ecological base conditions and the spatial distribution of EPL spaces in 2035 were identified, and optimization strategies were proposed for each conflicting zone. The results revealed the following: (1) The ecological base conditions in Mizhi County were categorized into three levels: ecological protection area, ecological control area, and general ecological area, with ecological protection area being the largest and general ecological area the smallest. (2) By 2035, ecological space is projected to decrease by 803.33 hm2, while production and living spaces are expected to increase by 612.03 hm2 and 191.30 hm2, respectively. (3) Approximately 40.80% of the land in the central urban area of Mizhi County is at risk of conflict. Intense conflict zones account for 1606.54 hm2, or 23.29% of the urban area; moderate conflict zones account for 968.19 hm2, or 14.04%; and weak conflict zones account for 239.32 hm2, or 3.47%. Based on the characteristics of each conflict zone, the study proposes EPL space optimization strategies focusing on ecological priority, moderate integration, and compatible development. The integrated research method presented in this study, which combines ecological base identification with urban growth simulation, demonstrates high applicability to the Loess Plateau hilly and gully region and offers valuable insights for the future optimization of EPL spaces in this area.

Cite this article

JIA Ruonan , WU Zuobin . Optimization of “ecological-production-living” spaces for urban areas in Loess Plateau hilly and gully region by the dual-guidance between constraints and growth: A case of the central urban area of Mizhi County[J]. Arid Land Geography, 2025 , 48(2) : 333 -344 . DOI: 10.12118/j.issn.1000-6060.2024.268

References

[1] 韩株桃, 石杰锋, 吴金华, 等. 基于POI数据及四叉树思想的“三生空间”识别方法[J]. 地球信息科学学报, 2022, 24(6): 1107-1119.
  [Han Zhutao, Shi Jiefeng, Wu Jinhua, et al. Recognition method of “The Production, Living and Ecological Space” based on POI data and Quad-tree idea[J]. Journal of Geo-information Science, 2022, 24(6): 1107-1119. ]
[2] 王庆, 王承武. 大数据视角下的城市“三生”空间识别及分布特征研究——以乌鲁木齐市中心城区为例[J]. 资源开发与市场, 2022, 38(2): 142-147.
  [Wang Qing, Wang Chengwu. Research on spatial identification and distribution characteristics of “production-living-ecological” in cities from the perspective of big data: A case study of Urumqi City[J]. Resource Development & Market, 2022, 38(2): 142-147. ]
[3] 焦庚英, 杨效忠, 黄志强, 等. 县域“三生空间”格局与功能演变特征及可能影响因素分析——以江西婺源县为例[J]. 自然资源学报, 2021, 36(5): 1252-1267.
  [Jiao Gengying, Yang Xiaozhong, Huang Zhiqiang, et al. Evolution characteristics and possible impact factors for the changing pattern and function of “production-living-ecological” space in Wuyuan County[J]. Journal of Natural Resources, 2021, 36(5): 1252-1267. ]
[4] 马彩虹, 安斯文, 文琦, 等. 基于土地利用转移流的国土空间格局演变及其驱动机制研究——以宁夏原州区为例[J]. 干旱区地理, 2022, 45(3): 925-934.
  [Ma Caihong, An Siwen, Wen Qi, et al. Evolution of territorial spatial pattern and its driving mechanism based onland use transfer flow: A case of Yuanzhou District in Ningxia[J]. Arid Land Geography, 2022, 45(3): 925-934. ]
[5] 黄金川, 林浩曦, 漆潇潇. 面向国土空间优化的三生空间研究进展[J]. 地理科学进展, 2017, 36(3): 378-391.
  [Huang Jinchuan, Lin Haoxi, Qi Xiaoxiao. A literature review on optimization of spatial development pattern based on ecological-production-living space[J]. Progress in Geography, 2017, 36(3): 378-391. ]
[6] 刘荣增, 文慧敏, 王淑华. 郑州都市圈空间分区及优化研究——基于“三生”空间功能评价[J]. 城市发展研究, 2023, 30(3): 1-6, 23.
  [Liu Rongzeng, Wen Huimin, Wang Shuhua. Study on the spatial zoning and optimization of Zhengzhou metropolitan region with the evaluation of the function of “Sansheng” space[J]. Urban Development Studies, 2023, 30(3): 1-6, 23. ]
[7] 翟玉鑫, 张飞云, 马丽娜. 基于三生空间的博斯腾湖流域生境质量时空演变及预估[J]. 干旱区地理, 2023, 46(11): 1792-1802.
  [Zhai Yuxin, Zhang Feiyun, Ma Lina. Evolution and prediction of habitat quality in the Bosten Lake Basin based on production-living-ecological space[J]. Arid Land Geography, 2023, 46(11): 1792-1802. ]
[8] 陈小卉, 胡剑双. 江苏省乡村空间治理实践: 阶段、路径与模式[J]. 城市规划学刊, 2024(1): 38-45.
  [Chen Xiaohui, Hu Jianshuang. Rural spatial governance in Jiangsu Province: Stages, trajectories, and models[J]. Urban Planning Forum, 2024(1): 38-45. ]
[9] 代秀龙, 赵家敏. 流域生态单元视角下全域土地综合整治路径——以广东省佛冈县汤塘镇省级试点为例[J]. 规划师, 2024, 40(1): 83-90.
  [Dai Xiulong, Zhao Jiamin. The path of comprehensive land consolidation in the whole region from the perspective of watershed ecological unit: The provincial pilot project of Tangtang Town, Guangdong Province[J]. Planners, 2024, 40(1): 83-90. ]
[10] 李阜鹏, 韩惠, 杨树文. 甘肃省2000—2020年土地利用变化分析及基于PLUS的生态空间多情景模拟[J]. 科学技术与工程, 2023, 23(15): 6316-6326.
  [Li Fupeng, Han Hui, Yang Shuwen. Analysis of land use change in Gansu Province from 2000 to 2020 and multi-scenario simulation of Gansu’s ecological space based on PLUS[J]. Science Technology and Engineering, 2023, 23(15): 6316-6326. ]
[11] 赵寿露, 李石华, 许新惠, 等. 耦合MOP-FLUS模型的滇中城市群“三生”空间格局优化[J]. 水土保持研究, 2022, 29(4): 322-328.
  [Zhao Shoulu, Li Shihua, Xu Xinhui, et al. Production-life-ecological space pattern optimization of the urban agglomeration in centra Yunnan based on coupled MOP and FLUS model[J]. Research of Soil and Water Conservation, 2022, 29(4): 322-328. ]
[12] 付晶莹, 郜强, 江东, 等. 黑土保护与粮食安全背景下齐齐哈尔市国土空间优化调控路径[J]. 地理学报, 2022, 77(7): 1662-1680.
  [Fu Jingying, Gao Qiang, Jiang Dong, et al. Optimal requlation of spatial planning in the context of black soil preservation and food security in Qiqihar[J]. Acta Geographica Sinica, 2022, 77(7): 1662-1680. ]
[13] 孙逊, 马乃喜, 曹明明, 等. 黄土高原志[M]. 西安: 陕西人民出版社, 1995: 1-19.
  [Sun Xun, Ma Naixi, Cao Mingming, et al. Loess Plateau chronicles[M]. Xi’an: Shaanxi People’s Publishing House, 1995: 1-19. ]
[14] 罗紫薇, 胡希军, 韦宝婧, 等. 基于多准则CA-Markov模型的城市景观格局演变与预测——以上杭县城区为例[J]. 经济地理, 2020, 40(10): 58-66.
  [Luo Ziwei, Hu Xijun, Wei Baojing, et al. Urban landscape pattern evolution and prediction based on multi-criteria CA-Markov model: Take Shanghang County as an example[J]. Economic Geography, 2020, 40(10): 58-66. ]
[15] Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning[J]. Landscape and Urban Planning, 1992, 23(1): 1-16.
[16] 俞孔坚. 生物保护的景观生态安全格局[J]. 生态学报, 1999, 19(1): 8-15.
  [Yu Kongjian. Landscape ecological security patterns in biological conservation[J]. Acta Ecologica Sinica, 1999, 19(1): 8-15. ]
[17] 张继平, 乔青, 刘春兰, 等. 基于最小累积阻力模型的北京市生态用地规划研究[J]. 生态学报, 2017, 37(19): 6313-6321.
  [Zhang Jiping, Qiao Qing, Liu Chunlan, et al. Ecological land use planning for Beijing City based on the minimum cumulative resistance model[J]. Acta Ecologica Sinica, 2017, 37(19): 6313-6321. ]
[18] 李嘉会, 吴金华, 王祯, 等. 黄土丘陵沟壑区农村居民点发展类型识别——以吴起县为例[J]. 干旱区地理, 2023, 46(3): 397-406.
  [Li Jiahui, Wu Jinhua, Wang Zhen, et al. Identification of rural residential development types in loess hilly and gully region: A case of Wuqi County[J]. Arid Land Geography, 2023, 46(3): 397-406. ]
[19] 靳含, 杨爱民, 夏鑫鑫, 等. 基于CA-Markov模型的多时间跨度土地利用变化模拟[J]. 干旱区地理, 2019, 42(6): 1415-1426.
  [Jin Han, Yang Aimin, Xia Xinxin, et al. Simulation of land use change at different time spans based on CA-Markov model[J]. Arid Land Geography, 2019, 42(6): 1415-1426. ]
[20] 高周冰, 王晓瑞, 隋雪艳, 等. 基于FLUS和InVEST模型的南京市生境质量多情景预测[J]. 农业资源与环境学报, 2022, 39(5): 1001-1013.
  [Gao Zhoubing, Wang Xiaorui, Sui Xueyan, et al. Multi-scenario prediction of habitat quality in Nanjing based on FLUS and InVEST models[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 1001-1013. ]
[21] 何苏玲, 贺增红, 潘继亚, 等. 基于多模型的县域土地利用/土地覆盖模拟[J]. 自然资源遥感, 2023, 35(4): 201-213.
  [He Suling, He Zenghong, Pan Jiya, et al. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4): 201-213. ]
[22] 罗紫元, 曾坚. 资源环境保护下天津市用地空间增长模拟[J]. 地理研究, 2022, 41(2): 341-357.
  [Luo Ziyuan, Zeng Jian. Spatial growth simulation of land use in Tianjin from the perspective of resource and environmental protection[J]. Geographical Research, 2022, 41(2): 341-357. ]
[23] 苏迎庆, 刘庚, 赵景波, 等. 基于FLUS模型的汾河流域生态空间多情景模拟预测[J]. 干旱区研究, 2021, 38(4): 1152-1161.
  [Su Yingqing, Liu Geng, Zhao Jingbo, et al. Multi-scenario simulation prediction of ecological space in the Fenhe River Basin using the FLUS model[J]. Arid Zone Research, 2021, 38(4): 1152-1161. ]
[24] 李井浩, 柳书俊, 王志杰. 基于FLUS和InVEST模型的云贵高原土地利用与生态系统服务时空变化多情景模拟研究[J]. 水土保持研究, 2024, 31(3): 287-298.
  [Li Jinghao, Liu Shujun, Wang Zhijie. Multi-scenario simulation of spatial temporal changes of land use pattern and ecosystem services in Yunnan-Guizhou Plateau based on FLUS and InVEST models[J]. Research of Soil and Water Conservation, 2024, 31(3): 287-298. ]
[25] 任胤铭, 刘小平, 许晓聪, 等. 基于FLUS-InVEST模型的京津冀多情景土地利用变化模拟及其对生态系统服务功能的影响[J]. 生态学报, 2023, 43(11): 4473-4487.
  [Ren Yinming, Liu Xiaoping, Xu Xiaocong, et al. Multi-scenario simulation of land use change and its impact on ecosystem services in Beijing-Tianjin-Hebei region based on the FLUS-InVEST model[J]. Acta Ecologica Sinica, 2023, 43(11): 4473-4487. ]
[26] Yang Y Y, Bao W K, Liu Y S. Scenario simulation of land system change in the Beijing-Tianjin-Hebei region[J]. Land Use Policy, 2020, 96: 104-677.
[27] 胡佶熹, 勒先文, 徐勇. 基于FLUS模型多情景土地利用变化对陆地生态系统碳储量影响——以江西萍乡为例[J]. 水土保持研究, 2024, 31(2): 299-309.
  [Hu Jiexun, Le Xianwen, Xu Yong. Estimating terrestrial eco-system carbon stock changes caused by multi-scenarios land-use changes based on the FLUS model: A case study of Pingxiang, Jiangxi[J]. Research of Soil and Water Conservation, 2024, 31(2): 299-309. ]
[28] 王保盛, 廖江福, 祝薇, 等. 基于历史情景的FLUS模型邻域权重设置——以闽三角城市群2030年土地利用模拟为例[J]. 生态学报, 2019, 39(12): 4284-4298.
  [Wang Baosheng, Liao Jiangfu, Zhu wei, et al. The weight of neighborhood setting of the FLUS model based on a historical scenario: A case study of land use simulation of urban agglomeration of the Golden Triangle of southern Fujian in 2030[J]. Acta Ecologica Sinica, 2019, 39(12): 4284-4298. ]
Outlines

/