Earth Surface Process

Isotopic characteristics of carbonate in salt lakes in the hinterland of Badain Jaran Desert and its environmental significance

  • LI Quancong ,
  • LEI Guoliang ,
  • ZHAO Hui ,
  • ZHU Yun ,
  • SUN Wanting ,
  • YU Yuan ,
  • JIANG Geping
Expand
  • 1. Key Laboratory of Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, Fujian, China
    2. School of Geographical Science and School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, Fujian, China
    3. Institute of Geography, Fujian Normal University, Fuzhou 350117, Fujian, China
    4. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2024-05-09

  Revised date: 2024-10-12

  Online published: 2025-02-25

Abstract

The formation of lake carbonate is closely associated with the physical and chemical properties of lake water and the climatic environment, serving as an essential carrier of lake environmental information. This study examines two types of carbonates (tufa and lake sediment carbonate) from six lakes in the hinterland of the Badain Jaran Desert, Inner Mongolia, China. The precipitation processes of these carbonates and their environmental implications were analyzed using stable carbon, oxygen, and clumped isotope (Δ47) indices. The results indicate the following: (1) The carbon and oxygen isotope characteristics of tufas and lake sediment carbonates from the six lakes differ significantly, with the oxygen isotope values of tufa deposits being notably more negative than those of lake sediment carbonates. (2) The clumped isotope temperatures [T47)] of lake sediment carbonates are consistent and approximate the regional summer temperature, whereas the T47) of tufas are lower. (3) Based on oxygen isotope values and T47), the estimated δ18O composition of the water in which the tufas precipitated suggests that the tufas capture a mixed signal from spring water and lake water. These findings provide preliminary insights into the environmental significance of salt lake carbonates in the hinterland of the Badain Jaran Desert and offer data to support long-term investigations into the hydrological evolution of desert lakes.

Cite this article

LI Quancong , LEI Guoliang , ZHAO Hui , ZHU Yun , SUN Wanting , YU Yuan , JIANG Geping . Isotopic characteristics of carbonate in salt lakes in the hinterland of Badain Jaran Desert and its environmental significance[J]. Arid Land Geography, 2025 , 48(2) : 247 -256 . DOI: 10.12118/j.issn.1000-6060.2024.288

References

[1] 朱金峰, 王乃昂, 陈红宝, 等. 基于遥感的巴丹吉林沙漠范围与面积分析[J]. 地理科学进展, 2010, 29(9): 1087-1094.
  [Zhu Jinfeng, Wang Nai’ang, Chen Hongbao, et al. Study on the boundary and the area of Badain Jaran Desert based on remote sensing imagery[J]. Progress in Geography, 2010, 29(9): 1087-1094. ]
[2] 张新毅, 范小露, 田明中. 巴丹吉林沙漠晚更新世沉积物矿物学特征及其指示意义[J]. 干旱区地理, 2022, 45(6): 1773-1783.
  [Zhang Xinyi, Fan Xiaolu, Tian Mingzhong. Mineralogical characteristics and its significance of late Pleistocene sediments in the Badain Jaran Desert[J]. Arid Land Geography, 2022, 45(6): 1773-1783. ]
[3] Gong Y, Wang X, Hu B X, et al. Groundwater contributions in water-salt balances of the lakes in the Badain Jaran Desert, China[J]. Journal of Arid Land, 2016, 8(5): 694-706.
[4] Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7-8): 811-831.
[5] 项超生, 汪勇, 王君波, 等. 高海拔干旱区湖泊沉积物多指标记录的环境变化研究——以阿克赛钦湖为例[J]. 干旱区地理, 2022, 45(2): 435-444.
  [Xiang Chaosheng, Wang Yong, Wang Junbo, et al. Environmental changes recorded by multiproxy of lake sediments in the high-altitude and arid area: A case of Lake Aksayqin[J]. Arid Land Geography, 2022, 45(2): 435-444. ]
[6] Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947: 562-581.
[7] Kim S T, O’Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61(16): 3461-3475.
[8] Ghosh P, Adkins J, Affek H, et al. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70: 1439-1456.
[9] Eiler J M. “Clumped-isotope” geochemistry: The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3-4): 309-327.
[10] Guo Y, Deng W, Wei G. Kinetic effects during the experimental transition of aragonite to calcite in aqueous solution: Insights from clumped and oxygen isotope signatures[J]. Geochimica et Cosmochimica Acta, 2019, 248: 210-230.
[11] 马素辉, 李卓仑, 王乃昂, 等. 地下水补给型湖泊表层沉积物矿物组成及其形成机制——以巴丹吉林沙漠湖泊群为例[J]. 湖泊科学, 2015, 27(4): 727-734.
  [Ma Suhui, Li Zhuolun, Wang Nai’ang, et al. Mineralogical assemblages in surface sediments and its formation mechanism in the groundwater recharged lakes: A case study of lakes in the Badain Jaran Desert[J]. Journal of Lake Science, 2015, 27(4): 727-734. ]
[12] 姜高磊, 王乃昂, 李卓仑, 等. 巴丹吉林沙漠湖泊表层沉积物盐类矿物分布及对气候环境的指示[J]. 中国地质, 2022, 51(6): 2077-2089.
  [Jiang Gaolei, Wang Nai’ang, Li Zhuolun, et al. Distribution pattern of saline minerals in surface sediments from lakes in the Badain Jaran Desert and its implications for climate-environmental reconstruction[J]. Geology in China, 2022, 51(6): 2077-2089. ]
[13] 赵晖, 杨宏宇, 王兴繁, 等. 巴丹吉林沙漠典型沉积物年代学研究评述[J]. 中国沙漠, 2022, 42(1): 57-65.
  [Zhao Hui, Yang Hongyu, Wang Xingfan, et al. Geochronology of the typical sediments in the Badain Jaran Desert: The progress and issues[J]. Journal of Desert Research, 2022, 42(1): 57-65. ]
[14] Andrews J E, Pedley M, Dennis P F. Palaeoenvironmental records in Holocene Spanish tufas: A stable isotope approach in search of reliable climatic archives[J]. Sedimentology, 2000, 47(5): 961-978.
[15] Rosen M R, Arehart G B, Lico M S. Exceptionally fast growth rate of <100-yr-old tufa, Big Soda Lake, Nevada: Implications for using tufa as a paleoclimate proxy[J]. Geology, 2004, 32(5): 409-412.
[16] Hudson A M, Quade J, Ali G, et al. Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates[J]. Geochimica et Cosmochimica Acta, 2017, 212: 274-302.
[17] 宁凯, 王乃昂, 李卓仑, 等. 基于CMB模型的巴丹吉林沙漠沙源区分析[J]. 干旱区地理, 2021, 44(2): 389-399.
  [Ning Kai, Wang Nai’ang, Li Zhuolun, et al. Analysis of sand source for Badain Jaran Desert based on CMB model[J]. Arid Land Geography, 2021, 44(2): 389-399. ]
[18] Yang X, Ma N, Dong J, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China[J]. Quaternary Research, 2010, 73(1): 10-19.
[19] 王乃昂, 宁凯, 李卓仑, 等. 巴丹吉林沙漠全新世的高湖面与泛湖期[J]. 中国科学: 地球科学, 2016, 46(8): 1106-1115.
  [Wang Nai’ang, Ning Kai, Li Zhuolun, et al. Holocene high lake-levels and pan-lake period on Badain Jaran Desert[J]. Science China Earth Sciences, 2016, 46(8): 1106-1115. ]
[20] 张文佳. 巴丹吉林沙漠腹地湖区蒸散发及水量平衡研究[D]. 兰州: 兰州大学, 2020.
  [Zhang Wenjia. Study on the evapotranspiration and water balance of lake basin in the hinterland of Badain Jaran Desert[D]. Lanzhou: Lanzhou University, 2020. ]
[21] Jiang G, Wang N, Mao X, et al. Hydrological evolution of a lake recharged by groundwater in the Badain Jaran Desert over the past 140 years[J]. Frontiers in Earth Science, 2021, 9: 721724, doi: 10.3389/feart.2021.721724.
[22] 曹乐, 聂振龙, 申建梅, 等. 巴丹吉林沙漠湖泊水化学类型与钙华沉积关系[J]. 地球科学, 2023, 48(10): 3844-3855.
  [Cao Le, Nie Zhenlong, Shen Jianmei, et al. Relationship between lakes’ hydrochemical types and tufa deposition in Badain Jaran Desert[J]. Earth Science, 2023, 48(10): 3844-3855. ]
[23] 巩艳萍. 巴丹吉林沙漠地下水对湖泊水均衡及其盐分变化的影响[D]. 北京: 中国地质大学(北京), 2017.
  [Gong Yanping. The impacts of groundwater on lakes in the Badain Jaran Desert relevant to water balance and salts variation[D]. Beijing: China University of Geosciences (Beijing), 2017. ]
[24] 赵力强, 张律吕, 王乃昂, 等. 巴丹吉林沙漠湖泊形态初步研究[J]. 干旱区研究, 2018, 35(5): 1001-1011.
  [Zhao Liqiang, Zhang Lülü, Wang Nai’ang, et al. Morphology of the lakes in the Badain Jaran Desert[J]. Arid Zone Research, 2018, 35(5): 1001-1011. ]
[25] 金可, 张乾柱, 卢阳, 等. 巴丹吉林沙漠湖泊群水体氢氧同位素和水化学特征[J]. 人民长江, 2022, 53(4): 65-72.
  [Jin Ke, Zhang Qianzhu, Lu Yang, et al. Research on stable isotopes and hydrochemical features of lakes water in Badain Jaran Desert[J]. Yangtze River, 2022, 53(4): 65-72. ]
[26] 陈立. 应用地球化学方法探究巴丹吉林沙漠地下水源[D]. 兰州: 兰州大学, 2012.
  [Chen Li. Groundwater recharge source in Badain Jaran Desert: Evidence from geochemistry[D]. Lanzhou: Lanzhou University, 2012. ]
[27] 陆莹, 王乃昂, 李贵鹏, 等. 巴丹吉林沙漠湖泊水化学空间分布特征[J]. 湖泊科学, 2010, 22(5): 774-782.
  [Lu Ying, Wang Nai’ang, Li Guipeng, et al. Spatial distribution of lakes hydro-chemical types in Badain Jaran Desert[J]. Journal of Lake Science, 2010, 22(5): 774-782. ]
[28] Yang X, Williams M A J. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China[J]. Catena, 2003, 51(1): 45-60.
[29] 曹乐, 聂振龙, 刘学全, 等. 巴丹吉林沙漠湖泊钙华的水化学成因[J]. 中国沙漠, 2017, 37(5): 1026-1034.
  [Cao Le, Nie Zhenlong, Liu Xuequan, et al. Hydrochemical cause of lakes tufa in Badain Jaran Desert[J]. Journal of Desert Research, 2017, 37(5): 1026-1034. ]
[30] Huntington K W, Eiler J M, Affek H P, et al. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(9): 1318-1329.
[31] Passey B H, Levin N E, Cerling T E, et al. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11245-11249.
[32] 许雅芯, 朱芸, 许丽红, 等. 样品量差异对团簇同位素Δ47测定的影响[J]. 第四纪研究, 2022, 42(2): 504-511.
  [Xu Yaxin, Zhu Yun, Xu Lihong, et al. Effects of different sample size on the reproducibility of clumped isotope(Δ47) measurements[J]. Quaternary Sciences, 2022, 42(2): 504-511. ]
[33] 杜垚华, 李苗发, 雷国良, 等. 福建仙云洞现代次生碳酸盐团簇同位素特征与温度重建[J]. 第四纪研究, 2023, 43(5): 1343-1353.
  [Du Yaohua, Li Miaofa, Lei Guoliang, et al. Clumped isotope characteristics and temperature reconstruction of carbonate in modern speleothems of Xianyun cave in Fujian[J]. Quaternary Sciences, 2023, 43(5): 1343-1353. ]
[34] John C M, Bowen D. Community software for challenging isotope analysis: First applications of ‘Easotope’ to clumped isotopes[J]. Rapid Communications in Mass Spectrometry, 2016, 30(21): 2285-2300.
[35] Dennis K J, Affek H P, Passey B H, et al. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7117-7131.
[36] Zhang J, Quay P D, Wilbur D O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta, 1995, 59(1): 107-114.
[37] Zeebe R E. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes[J]. Geochimica et Cosmochimica Acta, 1999, 63(13-14): 2001-2007.
[38] Affek H P, Zaarur S. Kinetic isotope effect in CO2 degassing: Insight from clumped and oxygen isotopes in laboratory precipitation experiments[J]. Geochimica et Cosmochimica Acta, 2014, 143: 319-330.
[39] Yan H, Liu Z, Sun H. Effect of in-stream physicochemical processes on the seasonal variations in δ13C and δ18O values in laminated travertine deposits in a mountain stream channel[J]. Geochimica et Cosmochimica Acta, 2017, 202: 179-189.
[40] Benson L. Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (tufas)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1994, 109(1): 55-87.
[41] Benson L, Peterman Z. Carbonate deposition, Pyramid Lake subbasin, Nevada: 3. The use of 87Sr values in carbonate deposits (tufas) to determine the hydrologic state of paleolake systems[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 119(3-4): 201-213.
[42] Smith G I. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California[J]. American Geophysical Union, 2009(1727): 1-115.
[43] Huntington K W, Petersen S V. Frontiers of carbonate clumped isotope thermometry[J]. Annual Review of Earth and Planetary Sciences, 2023, 51(1): 611-641.
[44] Jautzy J J, Savard M M, Dhillon R S, et al. Clumped isotope temperature calibration for calcite: Bridging theory and experimentation[J]. Geochemical Perspectives Letters, 2020, 14: 36-41.
[45] Piasecki A, Bernasconi S M, Grauel A L, et al. Application of clumped isotope thermometry to benthic foraminifera[J]. Geochemistry Geophysics Geosystems, 2019, 20(4): 2082-2090.
[46] Anderson N T, Kelson J R, Kele S, et al. A unified clumped isotope thermometer calibration (0.5-1100 ℃) using carbonate-based standardization[J]. Geophysical Research Letters, 2021, 48(7): 11, doi: 10.1029/2020GL092069.
[47] Kele S, Breitenbach S F M, Capezzuoli E, et al. Temperature dependence of oxygen-and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6-95 ℃ temperature range[J]. Geochimica et Cosmochimica Acta, 2015, 168: 172-192.
[48] Tripati A K, Hill P S, Eagle R A, et al. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition[J]. Geochimica et Cosmochimica Acta, 2015, 166: 344-371.
[49] Watkins J M, Hunt J D. A process-based model for non-equilibrium clumped isotope effects in carbonates[J]. Earth and Planetary Science Letters, 2015, 432: 152-165.
[50] Yang P, Wang N, Zhao L, et al. Variation characteristics and influencing mechanism of CO2 flux from lakes in the Badain Jaran Desert: A case study of Yindeer Lake[J]. Ecological Indicators, 2021, 127, doi: 10.1016/j.ecolind.2021.107731.
[51] 欧阳波罗. 巴丹吉林沙漠湖水和地下水氢氧同位素研究[D]. 北京: 中国地质大学(北京), 2014.
  [Ouyang Boluo. Characteristics of H-O isotopes in lake-water and groundwater in Badain Jaran Desert[D]. Beijing: China University of Geosciences (Beijing), 2014. ]
[52] Banda J F, Zhang Q, Ma L, et al. Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China[J]. Science of the Total Environment, 2021, 791: 148108, doi: 10.1016/j.scitotenv.2021.148108.
[53] Uchikawa J, Zeebe R E. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates[J]. Geochimica et Cosmochimica Acta, 2012, 95: 15-34.
[54] 曹乐. 巴丹吉林沙漠湖岸钙华沉积机制研究[D]. 石家庄: 中国地质科学院, 2017.
  [Cao Le. Study of the precipitation mechanism of tufa at lake shore in Badain Jaran Desert[D]. Shijiazhuang: Chinese Academy of Geological Sciences, 2017. ]
[55] 胡文峰, 王乃昂, 赵力强, 等. 巴丹吉林沙漠典型湖泊湖气界面水-热交换特征[J]. 地理科学进展, 2015, 34(8): 1061-1071.
  [Hu Wenfeng, Wang Nai’ang, Zhao Liqiang, et al. Water-heat exchange over a typical lake in Badain Jaran Desert, China[J]. Progress in Geography, 2015, 34(8): 1061-1071. ]
[56] Dong C, Wang N, Chen J, et al. New observational and experimental evidence for the recharge mechanism of the lake group in the Alxa Desert, north-central China[J]. Journal of Arid Environments, 2016, 124: 48-61.
[57] Li H, Liu X, Arnold A, et al. Mass 47 clumped isotope signatures in modern lacustrine authigenic carbonates in western China and other regions and implications for paleotemperature and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2021, 562: 116840, doi: 10.1016/j.epsl.2021.116840.
[58] 杨萍. 巴丹吉林沙漠不同生态系统CO2交换及其影响因素研究[D]. 兰州: 兰州大学, 2022.
  [Yang Ping. Research on CO2 exchange for different ecosystems and its influence factors in the Badain Jaran Desert[D]. Lanzhou: Lanzhou University, 2022. ]
[59] Guo W. Carbonate clumped isotope thermometry: Application to carbonaceous chondrites & effects of kinetic isotope fractionation[D]. Pasadena: California Institute of Technology, 2008.
[60] 吴月. 巴丹吉林沙漠地下水同位素特征与地下水年龄研究[D]. 兰州: 兰州大学, 2014.
  [Wu Yue. Isotopic characteristics and dating of groundwater in the Badain Jaran Desert[D]. Lanzhou: Lanzhou University, 2014. ]
[61] Su X, Lu C, Li M, et al. Hydrologic partition and maintenance mechanism of Badain Jaran Desert lake group indicated by hydrogen and oxygen stable isotopes, northwest China[J]. Environmental Earth Sciences, 2022, 82(1): 1-13.
Outlines

/