Function evaluation of reformed waterproof layer over frozen ground in mining area based on W-OH
Received date: 2024-01-18
Revised date: 2024-03-10
Online published: 2025-01-21
To address the challenges associated with forming frozen ground in permafrost mining areas, five concentrations of W-OH (0%, 1.5%, 2.5%, 3.5%, and 4.5%) were applied to the bottom of disturbed soil bodies to reform the waterproof layer at Muli mining area, Qinghai Provinve, China. Compressive tests, infiltration tests, and simulated rainfall tests were conducted to evaluate the reformed waterproof layer from three perspectives: physical performance, infiltration and sediment yield, and cost-effectiveness. Eight key factors influencing the reformed waterproof layer were identified using the analytic hierarchy process and expert scoring method, leading to the development of a functional evaluation system. The optimal scheme for the reformed waterproof layer was determined based on a comprehensive scoring approach. The results indicate: (1) W-OH enhanced the strength of coal gangue solidification, with the most significant improvement observed at 4.5% W-OH concentration. (2) Higher W-OH concentrations decreased the infiltration rate of the reconstructed aquiclude layer, extended the steady infiltration duration, and reduced cumulative infiltration. (3) Under rainfall conditions, increasing the W-OH concentration lowered the stable infiltration rate of coal gangue solidification, increased the average runoff rate, and elevated sediment yield. Besides, the average runoff rate and the average sediment yield are positively correlated with the concentration of W-OH and the slope gradient. (4) While the 4.5% W-OH concentration scheme achieved the highest comprehensive functional score, it posed practical challenges, such as clogging nozzles during application. Therefore, the 3.5% W-OH concentration scheme, which had the second-highest score, is recommended for practical implementation. These findings provide a theoretical basis for applying W-OH to reform waterproof layers over frozen ground in alpine mining areas.
YANG Siyuan , YANG Hailong , YANG Penghui , ZHANG Wei , ZHANG Songyang . Function evaluation of reformed waterproof layer over frozen ground in mining area based on W-OH[J]. Arid Land Geography, 2025 , 48(1) : 75 -74 . DOI: 10.12118/j.issn.1000-6060.2024.039
[1] | Song L, Yu Y, Yan Z, et al. Rapid analysis of composition of coal gangue based on deep learning and thermal infrared spectroscopy[J]. Sustainability, 2022, 14(23): 16210, doi: 10.3390/su142316210. |
[2] | 贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 46-52. |
[Jia Min. The current situation research on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 46-52.] | |
[3] | Feng Y, Shi L, Ma D, et al. Road performance evaluation of unburned coal gangue in cold regions[J]. Sustainability, 2023, 15(18): 13915, doi: 10.3390/su151813915. |
[4] | 孟宪文, 曹君, 薛占金. 黄土高原矿区生态系统服务价值的时空变化——以平朔矿区为例[J]. 干旱区地理, 2024, 47(3): 455-464. |
[Meng Xianwen, Cao Jun, Xue Zhanjin. Spatiotemporal changes of the ecosystem service value for mining area in Loess Plateau: A case of Pingshuo mining area[J]. Arid Land Geography, 2024, 47(3): 455-464.] | |
[5] | Shi F, Li X D, Cao Y, et al. The feasibility analysis of “ecological photovoltaics” from coal gangue mountains[J]. Sustainability, 2023, 15(11): 8761, doi: 10.3390/su15118761. |
[6] | 苏玥, 张存厚, 阿木尔萨那, 等. 1981—2018年内蒙古典型草原季节性冻土对气候变化的响应[J]. 干旱区地理, 2022, 45(3): 684-694. |
[Su Yue, Zhang Cunhou, Amuersana, et al. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018[J]. Arid Land Geography, 2022, 45(3): 684-694.] | |
[7] | 杨鹏辉, 杨海龙, 杨思远, 等. W-OH固化剂对高寒矿区煤矸石水分入渗的影响及模型拟合[J]. 干旱区地理, 2024, 47(9): 1542-1554. |
[Yang Penghui, Yang Hailong, Yang Siyuan, et al. Effect of W-OH stabilizer on water infiltration of coal gangue in high-cold mining areas and model fitting[J]. Arid Land Geography, 2024, 47(9): 1542-1554.] | |
[8] | Kurylyk L B, Macquarrie T K, Mckenzie M J. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools[J]. Earth-Science Reviews, 2014, 138: 313-334. |
[9] | McKenzie M J, Voss I C. Permafrost thaw in a nested groundwater-flow system[J]. Hydrogeology Journal, 2013, 21(1): 299-316. |
[10] | 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795. |
[Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost in the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795.] | |
[11] | 余莹莹, 汪永进, 范敬兰, 等. W-OH生态护坡技术在沙土区河道坡面上的应用[J]. 治淮, 2014(8): 31-32. |
[Yu Yingying, Wang Yongjin, Fan Jinglan, et al. Application of W-OH eco-bank protection technology on river bank slopes in sandy soil areas[J]. Harnessing the Huaihe River, 2014(8): 31-32.] | |
[12] | 李润杰, 郜志勇, 李添萍, 等. 生态恢复新材料特性及在三江源地区沙化地植被修复中的应用[C]// 青海省水利水电科学研究所. 全国水土保持生态修复学术研讨会论文集. 西安: 西安理工大学, 2009: 36-42. |
[Li Runjie, Gao Zhiyong, Li Tianping, et al. Characteristics of ecological restoration new materials and their application in sandy land revegetation in the Sanjiangyuan region[C]// Qinghai Province Water Conservancy and Hydropower Science Research Institute. National Symposium on Ecological Restoration of Soil and Water Conservation Proceeding. Xi’an: Xi’an University of Technology, 2009: 36-42.] | |
[13] | 王欣, 朱绪超, 梁音, 等. 新型W-OH材料对南方典型侵蚀土壤入渗和产流产沙的影响[J]. 中国水土保持科学, 2020, 18(6): 123-131. |
[Wang Xin, Zhu Xuchao, Liang Yin, et al. Effects of new polyurethane material (W-OH) on infiltration and runoff and sediment yield of two typical erodible soils in south China[J]. Science of Soil and Water Conservation, 2020, 18(6): 123-131.] | |
[14] | 郭凯先. W-OH新材料特性及在青海湖周边地区沙化地植生固沙中的应用[J]. 中国农村水利水电, 2012(4): 30-32, 37. |
[Guo Kaixian. Characteristics of new chemical material W-OH in the revegetation of desertified areas around Qinghai Lake and their application[J]. China Rural Water and Hydropower, 2012(4): 30-32, 37.] | |
[15] | 王黎军. W-OH新型防渗材料在高寒干旱区渠道中的应用研究[J]. 节水灌溉, 2011(4): 28-30, 34. |
[Wang Lijun. Study on the application of W-OH new anti-seepage material in channels in cold arid regions[J]. Water Saving Irrigation, 2011(4): 28-30, 34.] | |
[16] | 高运昌, 高盟, 尹诗. 聚氨酯固化海砂的静力特性试验研究[J]. 岩土力学, 2019, 40(增刊1): 231-236, 244. |
[Gao Yunchang, Gao Meng, Yin Shi. Experiments on static characteristics of sea sand solidified by polyurethane[J]. Rock and Soil Mechanics, 2019, 40(Suppl. 1): 231-236, 244.] | |
[17] | 张璐. 一种亲水反应型聚氨酯在藏北退化草原的应用研究[D]. 镇江: 江苏大学, 2019. |
[Zhang Lu. Application of a hydrophilic reactive polyurethane in degraded steppe of northern Tibet[D]. Zhenjiang: Jiangsu University, 2019.] | |
[18] | 魏忠义, 王萍, 王秋兵. 膨胀性阻水层对煤矸石山水分入渗的影响[J]. 水土保持学报, 2010, 24(2): 188-191. |
[Wei Zhongyi, Wang Ping, Wang Qiubing. Effect of expansive water-resisting layer on water infiltration of coal waste[J]. Journal of Soil and Water Conservation, 2010, 24(2): 188-191.] | |
[19] | 洪斌, 张祖莲, 黄英, 等. 人工降雨条件下云南红土坡面土壤侵蚀特性[J]. 水土保持通报, 2016, 36(4): 118-123. |
[Hong Bin, Zhang Zulian, Huang Ying, et al. Erosion characteristics of Yunnan laterite under artificial rainfall conditions[J]. Bulletin of Soil and Water Conservation, 2016, 36(4): 118-123.] | |
[20] | 李仕华. 梯田水文生态及其效应研究[D]. 西安: 长安大学, 2013. |
[Li Shihua. Reaserch on hydro-ecology of terrace and its effect[D]. Xi’an: Chang’an University, 2013.] | |
[21] | 何周窈, 何淑勤, 逯传琦, 等. 大渡河流域干旱河谷区坡面侵蚀产沙与水动力学特征研究[J]. 长江流域资源与环境, 2023, 32(4): 832-841. |
[He Zhouyao, He Shuqin, Lu Chuanqi, et al. Study on characteristics of slope erosion sediment production and hydrodynamics in arid valley area of Dadu River Basin[J]. Resources and Environment in the Yangtze Basin, 2023, 32(4): 832-841.] | |
[22] | 朱方方, 秦建淼, 朱美菲, 等. 模拟降雨下林下覆被结构对产流产沙过程的影响[J]. 水土保持学报, 2023, 37(3): 10-18. |
[Zhu Fangfang, Qin Jianmiao, Zhu Meifei, et al. Effect of mulch structure on runoff and sediment yield under simulation rainfall[J]. Journal of Soil and Water Conservation, 2023, 37(3): 10-18.] | |
[23] | 王保一, 张荣华, 荆莎莎, 等. 降雨和坡度对路基边坡产流产沙的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(2): 114-120. |
[Wang Baoyi, Zhang Ronghua, Jing Shasha, et al. Effects of rainfall and slope gradient on runoff and sediment yield of subgrade slope[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(2): 114-120.] | |
[24] | 吴智仁, 杨才千, 吴智深, 等. 基于W-OH有机复合固化材料的新型荒漠化防治及生态修复技术[C]// 日本JCK株式会社. 全国水土保持与荒漠化防治及生态修复交流研讨会论文集. 北京: 中国林业与环境促进会, 2009: 244-252. |
[Wu Zhiren, Yang Caiqian, Wu Zhishen, et al. A new technology for desertification prevention and ecological restoration based on W-OH organic composite solidification materials[C]// JCK Co., Ltd. National Collection of Papers on Soil and Water Conservation, Desertification Control, and Ecological Restoration. Beijing: China Council for the Promotion of Environment and Forestry, 2009: 244-252.] | |
[25] | 毛昶熙. 堤防工程手册[M]. 北京: 中国水利水电出版社, 2009. |
[Mao Changxi. Dikes engineering manual[M]. Beijing: China Water & Power Press, 2009.] |
/
〈 |
|
〉 |