Plant Ecology

Distribution characteristics and its influencing factors of surface soil pollen in the marginal monsoon region of China

  • WU Siqi ,
  • WEI Haiqin ,
  • CHEN Chunzhu ,
  • WEI Lisi ,
  • ZHAO Wenwei ,
  • LI Huan ,
  • SUN Yi ,
  • JIANG Qingfeng ,
  • ZHANG Xiaojian ,
  • ZHAO Yan
Expand
  • 1. School of Geographic Science, Nantong University, Nantong 226019, Jiangsu, China
    2. Shanwang National Nature Reserve Management and Conservation Center at Linqu, Weifang 262617, Shandong, China
    3. School of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
    4. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, Beijing, China

Received date: 2024-01-26

  Revised date: 2024-05-30

  Online published: 2025-01-21

Abstract

Studying the distribution characteristics of surface soil pollen in the marginal monsoon region of China and the factors influencing this distribution improves the reliability of reconstructing regional vegetation and paleo-monsoon evolution based on fossil pollen data. Through surface soil pollen analysis of 38 sampling sites with annual precipitation ranging from 30-650 mm in the marginal monsoon region of China, this study investigates the relationships among surface pollen assemblages, climate, and human activities. The results reveal that: (1) In low-altitude temperate steppe regions with a relatively warm and dry climate, Amaranthaceae and Artemisia dominate the pollen assemblages, and the ratio of Artemisia/Chenopodiaceae (A/C ratio) generally aligns with average annual precipitation. (2) In high-altitude alpine steppe and meadow regions with a relatively cold and humid climate, pollen assemblages are dominated by Cyperaceae, Asteraceae, and Poaceae. The summed percentages of Artemisia and Amaranthaceae pollen average 25.8%, and no distinctive correlation exists between the A/C ratio and average annual precipitation in these regions. (3) The total tree and shrub pollen percentages exhibit a stronger correlation with average annual temperature and the temperature of the warmest month compared to average annual precipitation. (4) These pollen assemblage characteristics reflect the vegetation distribution and hydrothermal conditions at varying altitudes in the marginal monsoon region of China. Redundancy analysis (RDA) of the pollen data also reveals the distribution of pollen assemblages and major pollen types along gradients of the warmest month temperature and altitude. In addition, the high abundance of fungal spores on the soil surface in the alpine region reflects environmental characteristics associated with significant grazing intensity and a subsequent high soil erosion rate.

Cite this article

WU Siqi , WEI Haiqin , CHEN Chunzhu , WEI Lisi , ZHAO Wenwei , LI Huan , SUN Yi , JIANG Qingfeng , ZHANG Xiaojian , ZHAO Yan . Distribution characteristics and its influencing factors of surface soil pollen in the marginal monsoon region of China[J]. Arid Land Geography, 2025 , 48(1) : 53 -62 . DOI: 10.12118/j.issn.1000-6060.2024.059

References

[1] Li G Q, Wang Z, Zhao W W, et al. Quantitative precipitation reconstructions from Chagan Nur revealed lag response of East Asian summer monsoon precipitation to summer insolation during the Holocene in arid northern China[J]. Quaternary Science Reviews, 2020, 239: 106365, doi: 10.1016/j.quascirev.2020.106365.
[2] Wen R L, Xiao J L, Fan J W, et al. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China[J]. Quaternary Science Reviews, 2017, 176: 29-35.
[3] Zhang Y R, Li Y Q, Liu L N, et al. No evidence of human disturbance to vegetation in the Zoige Region (north-eastern Tibetan Plateau) in the last millennium until recent decades[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589: 110843, doi: 10.1016/j.palaeo.2022.110843.
[4] Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years[J]. Quaternary International, 2005, 136(1): 131-140.
[5] Chen F H, Xu Q H, Chen J H, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5: 11186, doi: 10.1038/srep11186.
[6] Zhang J, Huang X Z, Wang Z L, et al. A late-Holocene pollen record from the western Qilian Mountains and its implications for climate change and human activity along the Silk Road, northwestern China[J]. The Holocene, 2018, 28(7): 1141-1150.
[7] Wang J L, Huang X Z, Zhang J, et al. Pollen record of humidity changes in the arid western Qilian Mountains over the past 300 years and comparison with tree-ring reconstructions[J]. Frontiers in Earth Science, 2020, 8: 562426, doi: 10.3389/feart.2020.562426.
[8] Davis M B, Brubaker L B. Differential sedimentation of pollen grains in lakes[J]. Limnology and Oceanography, 1973, 18(4): 635-646.
[9] Prentice I C. Pollen representation, source area, and basin size-toward a unified theory of pollen analysis[J]. Quaternary Research, 1985, 23(1): 76-86.
[10] Jackson S T. Pollen representation of vegetational patterns along an elevational gradient[J]. Journal of Vegetation Science, 1991, 2(5): 613-624.
[11] Sugita S. Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation[J]. Journal of Ecology, 1994, 82(4): 881-897.
[12] 韩岳婷, 李建勇, 刘剑波, 等. 准噶尔盆地西部花粉对植被的指示性研究[J]. 干旱区地理, 2023, 46(5): 773-781.
  [Han Yueting, Li Jianyong, Liu Jianbo, et al. Indicative study of pollen on vegetation in western Junger Basin[J]. Arid Land Geography, 2023, 46(5): 773-781.]
[13] Cao X Y, Tian F, Li K, et al. Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions[J]. Earth System Science Data, 2021, 13(7): 3525-3537.
[14] 陈辉, 吕新苗, 李双成. 柴达木盆地东部表土花粉分析[J]. 地理研究, 2004, 23(2): 201-210.
  [Chen Hui, Lü Xinmiao, Li Shuangcheng. A study on topsoil pollens in the east of Qaidam Basin[J]. Geographical Research, 2004, 23(2): 201-210.]
[15] 李芙蓉. 中国北方表土孢粉组合及其与植被和气候的关系[D]. 兰州: 兰州大学, 2012.
  [Li Furong. The surface pollen assemblages and their relationships with modern vegetation and climate in north China[D]. Lanzhou: Lanzhou University, 2012.]
[16] Xu Q H, Li Y C, Yang X L, et al. Quantitative relationship between pollen and vegetation in northern China[J]. Science in China Series D: Earth Sciences, 2007, 50(4): 582-599.
[17] Herzschuh U. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau[J]. Journal of Biogeography, 2007, 34(7): 1265-1273.
[18] 魏海成, 郑卓, 马海州, 等. 青海表土花粉分布规律及其与植被的关系[J]. 干旱区地理, 2009, 32(6): 932-940.
  [Wei Haicheng, Zheng Zhuo, Ma Haizhou, et al. Pollen distribution patterns of surface soil sample in Qinghai of China and their relationship with vegetation[J]. Arid Land Geography, 2009, 32(6): 932-940.]
[19] 程波, 陈发虎. 西北干旱区石羊河流域表土花粉分析[J]. 中国沙漠, 2010, 30(2): 350-356.
  [Cheng Bo, Chen Fahu. Pollen analysis of topsoil samples from Shiyang River drainage, northwest China[J]. Journal of Desert Research, 2010, 30(2): 350-356.]
[20] Wei H C, Chongyi E, Duan R L, et al. Fungal spore record of pastoralism on the NE Qinghai-Tibetan Plateau since the middle Holocene[J]. Science China Earth Sciences, 2021, 64: 1318-1331.
[21] Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP[J]. Science, 2015, 347(6219): 248-250.
[22] Ma M M, Dong G H, Jia X, et al. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes[J]. Quaternary Science Reviews, 2016, 145: 57-70.
[23] Li J Y, Zhao Y, Xu Q H, et al. Human influence as a potential source of bias in pollen-based quantitative climate reconstructions[J]. Quaternary Science Reviews, 2014, 99: 112-121.
[24] Li M Y, Xu Q H, Zhang S R, et al. Indicator pollen taxa of human-induced and natural vegetation in northern China[J]. The Holocene, 2015, 25(4): 686-701.
[25] 刘鸿雁, 李宜垠. 半干旱区气候变化和人类活动的孢粉指示[J]. 古生物学报, 2009, 48(2): 211-221.
  [Liu Hongyan, Li Yiyin. Pollen indicators of climate change and human activities in the semi-arid region[J]. Acta Palaeontologica Sinica, 2009, 48(2): 211-221.]
[26] 张雅平, 赵克良, 周新郢, 等. 家养食草动物粪便中的花粉及菌孢子类型及其对人类活动的指示意义[J]. 人类学学报, 2021, 40(5): 879-887.
  [Zhang Yaping, Zhao Keliang, Zhou Xinyin, et al. A study of pollen and fungal spores extracted from the feces of domestic herbivores in China and their implications for human behavior[J]. Acta Anthropologica Sinica, 2021, 40(5): 879-887.]
[27] 郝秀东, 翁成郁. 粪生真菌孢子在古生态学研究中的指示意义[J]. 海洋地质与第四纪地质, 2015, 35(1): 175-184.
  [Hao Xiudong, Wen Chengyu. The indicative significance of spores of corpophilous fungi in palaeoecological research[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 175-184.]
[28] van Geel B. Non-pollen palynomorphs[C]// Smol J P, BirksH J B, LastW M, et al. Tracking Environmental Change Using Lake Sediments (vol. 3):Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer Academic Publisher, 2001: 1-17.
[29] Huang X Z, Zhang J, Storozum M, et al. Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts[J]. Review of Palaeobotany and Palynology, 2020, 275: 104171, doi: 10.1016/j.revpalbo.2020.104171.
[30] Huang X Z, Zhang J, Ren L L, et al. Intensification and driving forces of pastoralism in northern China 5.7 ka ago[J]. Geophysical Research Letters, 2021, 48(7): e2020GL092288, doi: 10.1029/2020GL092288.
[31] Zhang J, Huang X Z, Wang J L, et al. An inverse relationship between moisture and grazing intensity in an arid mountain-basin system[J]. Progress in Physical Geography: Earth and Environment, 2022, 46(2): 310-322.
[32] Zhang J, Huang X Z, Zhang S R, et al. Cycles of grazing and agricultural activity during the historical period and its relationship with climatic and societal changes in northern China[J]. Land Degradation & Development, 2021, 32(11): 3315-3325.
[33] Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3): 351-364.
[34] 中国植被编辑委员会. 中国植被[M]. 北京: 科学出版社, 1995: 917-1034.
  [Editorial Committee of Vegetation of China. Vegetation of China[M]. Beijing: Science Press, 1995: 917-1034.]
[35] Stockmarr J. Tablets with spores used in absolute pollen analysis[J]. Pollen et Spores, 1971, 13: 615-621.
[36] Faegri K, Iversen J. Textbook of pollen analysis[M]. 4th ed. Chichester: John Wiley & Sons, 1989.
[37] 王伏雄, 钱南芬, 张玉, 等. 中国植物花粉形态[M]. 北京: 科学出版社, 1995.
  [Wang F X, Qian N F, Zhang Y, et al. Pollen flora of China[M]. Beijing: Science Press, 1995.]
[38] 唐领余, 毛礼米, 李春海, 等. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016.
  [Tang Lingyu, Mao Limi, Li Chunhai, et al. An illustrated handbook of Quaternary pollen and spores in China[M]. Beijing: Science Press, 2016.]
[39] 席以珍, 宁建长. 中国干旱半干旱地区花粉形态研究[J]. 玉山生物学报, 1994, 11: 119-191.
  [Xi Yizhen, Ning Jianchang. Study on pollen morphology of plants from dry and semidry area in China[J]. Yunshania, 1994, 11: 119-191.]
[40] Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15): 1965-1978.
[41] Prentice I C. Multidimensional scaling as a research tool in Quaternary palynology: A review of theory and methods[J]. Review of Palaeobotany and Palynology, 1980, 31: 71-104.
[42] Lep? J, ?milauer P. Multivariate analysis of ecological data using CANOCO[M]. Cambridge: Cambridge University Press, 2003.
[43] ter Braak C J F, Prentice I C. A theory of gradient analysis[C]// Begon M, FitterA H, FordE D, et al. Advances in Ecological Research. Cambridge: Academic Press, 1988.
[44] Pan Y F, Yan S, Behling H, et al. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction[J]. Aerobiologia, 2012, 29(2): 161-173.
[45] Li W. On dispersal efficiency of Picea pollen[J]. Journal of Integrative Plant Biology, 1991, 33(10): 792-800.
[46] Zhao Y, Liu H Y, Li F R, et al. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China[J]. The Holocene, 2012, 22(12): 1385-1392.
[47] El-Moslimany A P. Ecological significance of common nonarboreal pollen: Examples from drylands of the Middle-East[J]. Review of Palaeobotany and Palynology, 1990, 64(1-4): 343-350.
[48] Li Q, Lu H Y, Zhu L P, et al. Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau) since 8.4 kyr BP[J]. The Holocene, 2011, 21(6): 939-950.
[49] Zhao Y, Herzschuh U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau[J]. Vegetation History and Archaeobotany, 2009, 18: 245-260.
[50] Qin F. Modern pollen assemblages of the surface lake sediments from the steppe and desert zones of the Tibetan Plateau[J]. Science China Earth Sciences, 2021, 64: 425-439.
Outlines

/