Climatology and Hydrology

Thresholds of irrigated farmland area in the Hexi Corridor region

  • WU Mengyu ,
  • LI Dongjie ,
  • HAN Yuguo ,
  • QIU Ye ,
  • QU Zhixu
Expand
  • 1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2. Beijing Golden-Water Info-tech. Ltd., Beijing 100053, China
    3. Beijing Engineering Research Center of Soil and Water Conservation, Beijing 100083, China

Received date: 2023-10-10

  Revised date: 2023-11-15

  Online published: 2024-07-30

Abstract

Determining the capacity of regional agricultural water resources to support irrigated areas, restraining agricultural water usage, and controlling the expansion of irrigated farmland are crucial strategies for solving sustainable water use problems in the Hexi Corridor of northwest Gansu Province, China. In this paper, we applied the water balance principle and utilized the stepwise regression model to calculate the thresholds of water resource availability and the carrying capacity of the irrigated areas for the Hexi Corridor in different development scenarios. We used information on local water resources, water resource use, and the effective utilization coefficient of irrigation water. The analysis shows the following results: (1) Under the economic priority development scenario, the total exploitable water resources in the Hexi Corridor region is 48.22×108 m3, and the threshold value of the carrying irrigated area is 58.92×104-67.16×104 hm2. (2) Under the ecological priority development scenario, the total exploitable water resources are 34.44×108 m3, and the threshold value of the carrying irrigated area is 37.90×104-43.20×104 hm2. (3) Under the economic and ecological development scenario, the total exploitable water resources are 41.33×108 m³, and the threshold of the carrying irrigated area is 48.41×104-55.18×104 hm2. (4) The proportion of the micro-irrigation area and the effective utilization coefficient of irrigation water have a significant positive correlation. This study can provide a basis for determining a reasonable irrigation area and optimizing the Hexi Corridor’s soil and water planning and distribution system.

Cite this article

WU Mengyu , LI Dongjie , HAN Yuguo , QIU Ye , QU Zhixu . Thresholds of irrigated farmland area in the Hexi Corridor region[J]. Arid Land Geography, 2024 , 47(7) : 1165 -1174 . DOI: 10.12118/j.issn.1000-6060.2023.560

References

[1] Puy A, Borgonovo E, Lo Piano S, et al. Irrigated areas drive irrigation water withdrawals[J]. Nature Communications, 2021, 12(1): 4525, doi: 10.1038/s41467-021-24508-8.
[2] Zhu X F, Li Y Z, Li M Y, et al. Agricultural irrigation in China[J]. Journal of Soil and Water Conservation, 2013, 68(6): 147A-154A.
[3] 李绵德, 周冬梅, 朱小燕, 等. 河西走廊2000—2020年农业碳排放时空特征及其影响因素[J]. 农业资源与环境学报, 2023, 40(4): 940-952.
  [Li Miande, Zhou Dongmei, Zhu Xiaoyan, et al. Spatial-temporal characteristics of agricultural carbon emissions and influencing factors in the Hexi Corridor from 2000 to 2020[J]. Journal of Agriculture Resources and Environment, 2023, 40(4): 940-952.]
[4] 陈世超, 刘文丰, 杜太生. 基于水氮管理与种植结构优化的作物丰产高效管理策略[J]. 农业工程学报, 2022, 38(16): 144-152.
  [Chen Shichao, Liu Wenfeng, Du Taisheng. Achieving high-yield and high-efficient management strategy based on optimized irrigation and nitrogen fertilization management and planting structure[J]. Journal of Agricultural Engineering, 2022, 38(16): 144-152.]
[5] 王利民. “一带一路”视角下的水资源短缺响应——以甘肃河西走廊绿洲为例[J]. 甘肃农业, 2017(6): 47-49.
  [Wang Limin. Response to water scarcity under the perspective of “Belt and Road”: The case of Gansu Hexi Corridor oasis[J]. Gansu Agriculture, 2017(6): 47-49.]
[6] 李玉忠, 胡秉安. 河西绿洲灌溉农业区发展节水农业探析[J]. 中国农村水利水电, 2011(2): 55-58.
  [Li Yuzhong, Hu Bing’an. Exploring the development of water-saving agriculture in the irrigated agricultural area of Hexi oasis[J]. China Rural Water Conservancy and Hydropower, 2011(2): 55-58.]
[7] Gao L M, Zhang Y N. Spatio-temporal variation of hydrological drought under climate change during the period 1960—2013 in the Hexi Corridor, China[J]. Journal of Arid Land, 2016, 8(2): 157-171.
[8] 唐霞, 李森. 历史时期河西走廊绿洲演变研究的进展[J]. 干旱区资源与环境, 2021, 35(7): 48-55.
  [Tang Xia, Li Sen. An analysis on the oasis evolution of Hexi Corridor in historical period[J]. Journal of Arid Land Resources and Environment, 2021, 35(7): 48-55.]
[9] 赵新风, 徐海量, 王敏, 等. 不同水平年塔里木河流域灌溉面积超载分析[J]. 农业工程学报, 2015, 31(24): 77-81.
  [Zhao Xinfeng, Xu Hailiang, Wang Min, et al. Overloading analysis of irrigation area in basins of Tarim River in different years[J]. Journal of Agricultural Engineering, 2015, 31(24): 77-81.]
[10] 魏光辉, 桂东伟, 赵新风. 不同水平年塔里木河流域“四源一干”可承载灌溉面积研究[J]. 干旱区地理, 2018, 41(2): 230-237.
  [Wei Guanghui, Gui Dongwei, Zhao Xinfeng. Irrigation area carrying capacity in Tarim River Basin in different years[J]. Arid Land Geography, 2018, 41(2): 230-237.]
[11] 张沛, 陈超群, 徐海量, 等. 塔里木河“九源一干”可承载最大灌溉面积探讨[J]. 干旱区研究, 2017, 34(1): 223-231.
  [Zhang Pei, Chen Chaoqun, Xu Hailiang, et al. The bearable largest irrigation area in the basins of nine source streams and mainstream of the Tarim River[J]. Arid Zone Research, 2017, 34(1): 223-231.]
[12] 李婧昕, 张红旗. 新疆昌吉绿洲耕地适宜规模研究[J]. 地理研究, 2021, 40(3): 613-626.
  [Li Jingxin, Zhang Hongqi. Study on the suitable scale of cultivated land in oasis of Changji, Xinjiang[J]. Geographical Research, 2021, 40(3): 613-626.]
[13] 柯映明. 近60年来渭干河流域耕地与胡杨的时空演变分析[D]. 北京: 中国科学院大学, 2020.
  [Ke Yingming. Spatiotemporal evolution analysis of cropland and Populus euphratica in Weigan River Basin in recent 60 years[D]. Beijing: University of Chinese Academy of Sciences, 2020.]
[14] 陈志达. 甘肃省农田灌溉水有效利用系数测算分析研究——以2014年测算工作为例[J]. 甘肃农业, 2015(12): 32-34.
  [Chen Zhida. Analytical study on measurement and analysis of effective utilization coefficient of agricultural irrigation water in Gansu Province: Taking the measurement work in 2014 as an example[J]. Gansu Agriculture, 2015(12): 32-34.]
[15] 张靖琳, 吉喜斌, 陈学亮, 等. 河西走廊中段临泽绿洲水资源供需平衡及承载力分析[J]. 干旱区地理, 2018, 41(1): 38-47.
  [Zhang Jinglin, Ji Xibin, Chen Xueliang, et al. Regional supply-demand balance and carrying capacity of water resources for Linze oasis in the middle of Hexi Corridor[J]. Arid Land Geography, 2018, 41(1): 38-47.]
[16] 贾绍凤, 柳文华. 水资源开发利用率40%阈值溯源与思考[J]. 水资源保护, 2021, 37(1): 87-89.
  [Jia Shaofeng, Liu Wenhua. Tracing and thinking about 40% threshold value of water resources development and utilization ratio[J]. Water Resources Protection, 2021, 37(1): 87-89.]
[17] 钱正英, 张光斗. 中国可持续发展水资源战略研究综合报告及各专题报告[M]. 北京: 水利水电出版社, 2001.
  [Qian Zhengying, Zhang Guangdou. Synthesis report and thematic reports of the study on China’s water resources strategy for sustainable development[M]. Beijing: Water Resources and Hydropower Press, 2001.]
[18] 邱琳麟. 水资源约束下的塔里木河流域耕地适宜规模研究[D]. 上海: 华东师范大学, 2022.
  [Qiu Linlin. Appropriate scale study of cultivated land in the Tarim River Basin with water resource constraints[D]. Shanghai: East China Normal University, 2020.]
[19] 郭丹丹, 张世伟, 吴劲, 等. 基于Horton分形的灌区灌溉水有效利用系数影响因素分析[J]. 北京师范大学学报(自然科学版), 2020, 56(3): 436-444.
  [Guo Dandan, Zhang Shiwei, Wu Jin, et al. Factors influencing effective utilization coefficient of irrigation water as determined with Horton fractal[J]. Journal of Beijing Normal University (Natural Science Edition), 2020, 56(3): 436-444.]
[20] 鞠艳, 杨星, 毕克杰, 等. 江苏省农田灌溉水有效利用系数年际变化及其影响因素分析[J]. 灌溉排水学报, 2022, 41(12): 123-130.
  [Ju Yan, Yang Xing, Bi Kejie, et al. Annual variation in effective utilization coefficient of irrigation water and its determinants in Jiangsu Province[J]. Journal of Irrigation and Drainage, 2022, 41(12): 123-130.]
[21] 王凌阁, 朱睿, 陈泽霞, 等. 甘肃河西地区2000—2019年水土资源耦合协调特征[J]. 中国沙漠, 2022, 42(2): 44-53.
  [Wang Lingge, Zhu Rui, Chen Zexia, et al. Coupling effect of water-soil resources in Hexi area of Gansu, China in 2000—2019[J]. Journal of Desert Research, 2022, 42(2): 44-53.]
[22] 陈亚宁, 李忠勤, 徐建华, 等. 中国西北干旱区水资源与生态环境变化及保护建议[J]. 中国科学院院刊, 2023, 38(3): 385-393.
  [Chen Yaning, Li Zhongqin, Xu Jianhua, et al. Changes and protection suggestions in water resources and ecological environment in arid region of northwest China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 385-393.]
[23] 王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
  [Wang Chenghai, Zhang Shengning, Zhang Feimin, et al. On the increase of precipitation in the northwestern China under the global warming[J]. Advances in Earth Science, 2021, 36(9): 980-989.]
[24] Huss M, Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8(2): 135-140.
[25] Zhao H Y, Su B, Lei H J, et al. A new projection for glacier mass and runoff changes over High Mountain Asia[J]. Science Bulletin, 2023, 68(1): 43-47.
[26] 王伟军, 赵雪雁, 张明军, 等. 西北干旱区内陆河流域公众的水资源感知及节水意向——以甘肃省河西走廊地区为例[J]. 中国人口·资源与环境, 2019, 29(11): 148-157.
  [Wang Weijun, Zhao Xueyan, Zhang Mingjun, et al. Public perception of water resources and water-saving intention in arid inland river basins of northwestern China[J]. China Population, Resources and Environment, 2019, 29(11): 148-157.]
[27] 左其亭. 净水资源利用率的计算及阈值的讨论[J]. 水利学报, 2011, 42(11): 1372-1378.
  [Zuo Qiting. Discussion on the calculation method and threshold of the net-utilization ratio of water resources[J]. Journal of Hydraulic Engineering, 2011, 42(11): 1372-1378.]
[28] 杨芳, 郑江丽, 李兴拼. 省级灌溉水有效利用系数测算工作评估方法探讨[J]. 节水灌溉, 2016(9): 129-132.
  [Yang Fang, Zheng Jiangli, Li Xingpin. Exploration of assessment methods for measuring the effective utilization coefficient of irrigation water at the provincial level[J]. Water Saving Irrigation, 2016(9): 129-132.]
[29] 冯保清, 崔静. 全国纯井灌区类型构成对灌溉水有效利用系数的影响分析[J]. 灌溉排水学报, 2013, 32(3): 50-53.
  [Feng Baoqing, Cui Jing. Influence analysis of irrigation area composition of well irrigation district on irrigation water use efficiency in China[J]. Journal of Irrigation and Drainage, 2013, 32(3): 50-53.]
[30] 邓铭江. 中国西北“水三线”空间格局与水资源配置方略[J]. 地理学报, 2018, 73(7): 1189-1203.
  [Deng Mingjiang. “Three Water Lines” strategy: Its spatial patterns and effects on water resources allocation in northwest China[J]. Journal of Geography, 2018, 73(7): 1189-1203.]
[31] 杨静, 周冬梅, 马静, 等. 疏勒河流域农业水土资源时空匹配特征分析[J]. 干旱区地理, 2023, 46(6): 982-992.
  [Yang Jing, Zhou Dongmei, Ma Jing, et al. Spatial and temporal matching characteristics of agricultural land and water resources in the Shule River Basin[J]. Arid Land Geography, 2023, 46(6): 982-992.]
Outlines

/