Climatology and Hydrology

Remote sensing inversion of water quality and spatiotemporal evolution characteristics of the Bosten Inland Freshwater Lake

  • LYU Na ,
  • GUO Mengjing ,
  • ZHAO Xin ,
  • LIU Kele ,
  • HUANG Yujia
Expand
  • State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, Shaanxi, China

Received date: 2023-07-27

  Revised date: 2023-11-11

  Online published: 2024-07-09

Abstract

Lakes serve as important water sources in arid regions, and changes in water quality of lakes in these areas play a crucial role in maintaining regional ecological balance and water cycle. Therefore, focusing on China’s inland freshwater lake, Bosten Lake, Xinjiang, this study conducted pre-processing on Landsat series remote sensing images from 2001 to 2020, including atmospheric correction and radiometric calibration. An improved normalized index method was used to extract water bodies and analyze their area change trend. Combined with measured mineralization and chlorophyll-a concentration data, an empirical method was employed to compare and analyze the correlation between band and band combination reflectance values with mineralization and chlorophyll-a, selecting the bands with the best correlation to establish models. Mineralization inversion models were constructed using bands B5, B3/B4, and B3+B4, while chlorophyll-a concentration inversion models were developed using bands B2, B3, and B2×B3. Subsequently, the accuracy of the selected two inversion models was validated using determination coefficients and root mean square errors. The results indicate: (1) The lake area gradually decreased from 2001 to 2013 and then began to increase in two phases with 2013 as the turning point. (2) Bosten Lake exhibits a spatial distribution of mineralization concentration higher in the lake center and lower in the lake periphery, while chlorophyll-a concentration distribution is opposite to mineralization distribution. (3) Over a long time series, mineralization concentration and chlorophyll-a concentration in Bosten Lake show an increasing followed by decreasing trend at an annual scale. The maximum mineralization concentration was 1023.8 mg·L-1 in 2013 and the maximum chlorophyll-a concentration was 5.04 µg·L-1 in 2015. In the past few decades, significant progress has been made in China’s water quality monitoring and management in Bosten Lake. However, further improvements are needed in terms of spatiotemporal coverage, index lists, the integration of human-nature interactions, inversion accuracy, and model generalization.

Cite this article

LYU Na , GUO Mengjing , ZHAO Xin , LIU Kele , HUANG Yujia . Remote sensing inversion of water quality and spatiotemporal evolution characteristics of the Bosten Inland Freshwater Lake[J]. Arid Land Geography, 2024 , 47(6) : 953 -966 . DOI: 10.12118/j.issn.1000-6060.2023.386

References

[1] 韩昭庆, 韦凯. 近70年来中国河湖水系变迁研究述评[J]. 中国历史地理论丛, 2022, 37(1): 127-139, 149.
  [Han Zhaoqing, Wei Kai. A review on the studies of changes in rivers and lakes of China in recent 70 years[J]. Journal of Chinese Historical Geography, 2022, 37(1): 127-139, 149.]
[2] D?rnh?fer K, Oppelt N. Remote sensing for lake research and monitoring: Recent advances[J]. Ecological Indicators, 2016, 64: 105-122.
[3] 朱刚, 高会军, 曾光. 近35 a来新疆干旱区湖泊变化及原因分析[J]. 干旱区地理, 2015, 38(1): 103-110.
  [Zhu Gang, Gao Huijun, Zeng Guang. Lake change research and reasons analysis in Xinjiang arid regions during the past 35 years[J]. Arid Land Geography, 2015, 38(1): 103-110.]
[4] Zhang G, Yao T, Xie H, et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208: 103269, doi: 10.1016/j.earscirev.2020.103269.
[5] Palmer S C J, Kutser T, Hunter P D. Remote sensing of inland waters: Challenges, progress and future directions[J]. Remote Sensing of Environment, 2015, 157: 1-8.
[6] 王梓璇, 王圃, 王颖, 等. 基于小波分解及遗传BPNN耦合模型的地表水As浓度预测研究[J]. 环境科学学报, 2021, 41(7): 2942-2950.
  [Wang Zixuan, Wang Pu, Wang Ying, et al. Wavelet decomposition and genetic BPNN hybrid model based modelling approach for as concentration prediction in surface water[J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2942-2950.]
[7] 吕婕梅, 安艳玲, 吴起鑫, 等. 贵州清水江流域丰水期水化学特征及离子来源分析[J]. 环境科学, 2015, 36(5): 1565-1572.
  [Lü Jiemei, An Yanling, Wu Qixin, et al. Hydrochemical characteristics and sources of Qingshuijiang River Basin at wet season in Guizhou Province[J]. Environmental Science, 2015, 36(5): 1565-1572.]
[8] 林楚翘, 易雨君, 刘铁. 博斯腾湖流域水系连通评价及优化调控[J]. 环境工程, 2020, 38(10): 21-25.
  [Lin Chuqiao, Yi Yujun, Liu Tie. Water system connectivity evaluation and optimal control in Bosten Lake Basin[J]. Environmental Engineering, 2020, 38(10): 21-25.]
[9] 王亚宁, 李一平, 程月, 等. 大型浅水湖泊水质模型边界负荷敏感性分析[J]. 环境科学, 2021, 42(6): 2778-2786.
  [Wang Yaning, Li Yiping, Cheng Yue, et al. Sensitivity analysis of boundary load reduction in a large shallow lake water quality model[J]. Environmental Science, 2021, 42(6): 2778-2786.]
[10] Vasistha P, Ganguly R. Water quality assessment of natural lakes and its importance: An overview[J]. Materials Today: Proceedings, 2020, 32: 544-552.
[11] 谭志强, 李云良, 张奇, 等. 湖泊湿地水文过程研究进展[J]. 湖泊科学, 2022, 34(1): 18-37.
  [Tan Zhiqiang, Li Yunliang, Zhang Qi, et al. Progress of hydrological process researches in lake wetland: A review[J]. Journal of Lake Science, 2022, 34(1): 18-37.]
[12] 梁中耀, 余艳红, 王丽婧, 等. 湖泊水质时空变化特征识别的贝叶斯方差分析方法[J]. 环境科学学报, 2017, 37(11): 4170-4177.
  [Liang Zhongyao, Yu Yanhong, Wang Lijing, et al. A Bayesian ANOVA method to identify the temporal and seasonal dynamics of lake water quality variables[J]. Acta Scientiae Circumstantiae, 2017, 37(11): 4170-4177.]
[13] Sagan V, Peterson K T, Maimaitijiang M, et al. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing[J]. Earth-Science Reviews, 2020, 205: 103187, doi: 10.1016/j.earscirev.2020.103187.
[14] 况润元, 罗卫, 张萌. 基于实测数据与遥感影像的鄱阳湖水体光学分类[J]. 长江流域资源与环境, 2015, 24(5): 773-780.
  [Kuang Runyuan, Luo Wei, Zhang Meng. Qptical classification of Poyang Lake waters based on in situ measurements and remote sensing images[J]. Resources and Environment in the Yangtze Basin, 2015, 24(5): 773-780.]
[15] 王思梦, 秦伯强. 湖泊水质参数遥感监测研究进展[J]. 环境科学, 2023, 44(3): 1228-1243.
  [Wang Simeng, Qin Boqiang. Research progress on remote sensing monitoring of lake water quality parameters[J]. Environmental Science, 2023, 44(3): 1228-1243.]
[16] 马煜栋, 杨帅, 韩静, 等. 陕西榆林地区无定河流域淤地坝遥感解译[J]. 干旱区地理, 2022, 45(3): 786-791.
  [Ma Yudong, Yang Shuai, Han Jing, et al. Remote sensing interpretation of check dams in Wuding River Basin in Yulin Area of Shaanxi Province[J]. Arid Land Geography, 2022, 45(3): 786-791.]
[17] Carpenter D J, Carpenter S M. Modeling inland water quality using Landsat data[J]. Remote Sensing of Environment, 1983, 13(4): 345-352.
[18] 吴欢欢, 国巧真, 臧金龙, 等. 基于Landsat 8与实测数据的水质参数反演研究[J]. 遥感技术与应用, 2021, 36(4): 898-907.
  [Wu Huanhuan, Guo Qiaozhen, Zang Jinlong, et al. Study on water quality parameter inversion based on Landsat 8 and measured data[J]. Remote Sensing Technology and Application, 2021, 36(4): 898-907.]
[19] 张旭辉, 玉素甫江·如素力, 仇忠丽, 等. 基于Sentinel-2时序数据的新疆焉耆盆地农作物遥感识别与评估[J]. 干旱区地理, 2024, 47(4): 672-683.
  [Zhang Xuhui, Rusuli Yusufujiang, Qiu Zhongli, et al. Remote sensing identification and assessment of crops in Yanqi Basin, Xinjiang, China, based on Sentinel-2 time series data[J]. Arid Land Geography, 2024, 47(4): 672-683.]
[20] 雪克来提·巴斯托夫, 梁犁丽, 冶运涛, 等. 博斯腾湖小湖区生态环境现状与治理措施[J]. 人民黄河, 2021, 43(增刊2): 88-90.
  [Bastov Shakhti, Liang Lili, Ye Yuntao, et al. Ecological environment status and treatment measures of Bosten Lake Lake[J]. Yellow River, 2019, 43(Suppl. 2): 88-90.]
[21] 亚夏尔·艾斯克尔, 玉素甫江·如素力. 基于多端元解混模型的博斯腾湖区域植被和水域时空变化特征及趋势分析[J]. 干旱区地理, 2023, 46(10): 1622-1631.
  [Aisikeer Yaxiaer, Rusuli Yusufujiang. Spatiotemporal variation characteristics and trend analysis of vegetation and water area in the Bosten Lake based on multiple endmember spectral mixture analysis model[J]. Arid Land Geography, 2023, 46(10): 1622-1631.]
[22] 卢文君, 刘志辉, 习阿幸. 博斯腾湖水体矿化度影响因子分析及调控措施[J]. 中国农村水利水电, 2015(5): 97-101.
  [Lu Wenjun, Liu Zhihui, Xi Axing. An analysis of the influencing factor of water mineralization and regulation strategies for Bosten[J]. Rural Water and Hydropower in China, 2015(5): 97-101.]
[23] 阿依妮尕尔. 艾尔肯, 朱建春, 吴云海, 等. 博斯腾湖水质现状的调查分析及改善对策[J]. 新疆农业大学学报, 2015, 38(2): 157-162.
  [Aierke Ayinigaer, Zhu Jianchun, Wu Yunhai, et al. Investigation and analysis the current situation of bostenlakeand corresponding improvement solutions[J]. Journal of Xinjiang Agricultural University, 2015, 38(2): 157-162.]
[24] 魏光辉, 杨鹏年. 新疆博斯腾湖1997—2010年水质及硝态氮变化研究[J]. 水电能源科学, 2016, 34(5): 42-45, 54.
  [Wei Guanghui, Yang Pengnian. Study on water quality and nitrate nitrogen change of Bosten Lake during 1997—2010[J]. Water Resources and Power, 2016, 34(5): 42-45, 54.]
[25] 阿依努尔·买买提, 玉米提·哈力克, 阿依加马力·克然木, 等. 博斯腾湖面积变化遥感监测及其驱动因素分析[J]. 新疆农业科学, 2017, 54(4): 766-774.
  [Maimat Aynur, Harik ümüt, Keram Ayjamal, et al. Remote sensing monitoring of Bosten Lake water resourses and its driving factors analysis[J]. Xinjiang Agricultural Sciences, 2017, 54(4): 766-774.]
[26] 彭妍菲, 李忠勤, 姚晓军, 等. 基于多源遥感数据和GEE平台的博斯腾湖面积变化及影响因素分析[J]. 地球信息科学学报, 2021, 23(6): 1131-1153.
  [Peng Yanfei, Li Zhongqin, Yao Xiaojun, et al. Area change and cause analysis of Bosten Lake based on multi-source remote sensing data and GEE platform[J]. Journal of Geo-information Science, 2019, 23(6): 1131-1153.]
[27] 周荣攀, 徐长春. 基于Landsat影像的博斯腾湖水质参数反演模型研究[J]. 湖北农业科学, 2016, 55(10): 2507-2513.
  [Zhou Rongpan, Xu Changchun. Inversion model of water quality parameters of Bosten Lake based on Landsat image[J]. Hubei Agricultural Sciences, 2016, 55(10): 2507-2513.]
[28] 姜红, 玉素甫江·如素力, 阿迪来·乌甫, 等. 博斯腾湖矿化度遥感反演及空间分布特征研究[J]. 环境监测管理与技术, 2017, 29(2): 11-15.
  [Jiang Hong, Yusufujiang Rusuri, Ufu Adilai, et al. Remote sensing data based study on retrieval and spatial distribution characteristics of water salinity in Bosten Lake[J]. Environmental Monitoring Management and Technology, 2017, 29(2): 11-15.]
[29] 胡丛巧, 迪丽努尔·阿吉, 李茹霞, 等. 博斯腾湖不同时空尺度下土地利用景观格局对水质的影响[J/OL]. 水生态学杂志: 1-11[2024-05-31]. https://doi.org/10.15928/j.1674-3075.202211020436.
  [Hu Congqiao, Aji Dilinur, Li Ruxia, et al. Effects of land use landscape pattern on water quality at different spatial and temporal scales in Bosten Lake[J/OL]. Chinese Journal of Water Ecology: 1-11[2024-05-31]. https://doi.org/10.15928/j.1674-3075.202211020436.]
[30] 陈栋栋, 赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
  [Chen Dongdong, Zhao Jun. Spatial-temporal variations of lake area in arid region of northwestern China[J]. Remote Sensing Technology and Application, 2017, 32(6): 1114-1125.]
[31] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589-595.
  [Xu Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589-595.]
[32] 李飞, 桑国庆, 孙盈, 等. 基于高分一号卫星遥感数据的复杂水体信息提取方法研究[J]. 济南大学学报: 自然科学版, 2021, 35(6): 572-579.
  [Li Fei, Sang Guoqing, Sun Ying, et al. Research on complex water body information extraction based on GF-1 satellite remote sensing data[J]. Journal of Jinan University (Natural Science Edition), 2021, 35(6): 572-579.]
[33] 乔丹玉, 郑进辉, 鲁晗, 等. 面向不同环境背景的Landsat影像水体提取方法适用性研究[J]. 地球信息科学学报, 2021, 23(4): 710-722.
  [Qiao Danyu, Zheng Jinhui, Lu Han, et al. Application of water extraction methods from Landsat imagery for different environmental background[J]. Journal of Geoinformation Science, 2021, 23(4): 710-722.]
[34] 张一琼, 海米提·依米提, 魏彬, 等. 1972—2011年博斯腾湖面积变化遥感分析[J]. 安徽农业科学, 2015, 43(12): 245-249.
  [Zhang Yiqiong, Imiti Hemity, Wei Bin, et al. Remote sensing analysis of Bosten Lake area change from 1972 to 2011[J]. Anhui Agricultural Sciences, 2015, 43(12): 245-249.]
[35] 郭燕妮, 李元鹏, 邵克强, 等. 博斯腾湖有色可溶性有机物来源及季节变化特征[J]. 环境科学学报, 2020, 40(11): 3971-3981.
  [Guo Yanni, Li Yuanpeng, Shao Keqiang, et al. Sources and seasonal variation of chromophoric dissolved organic matter in Lake Bosten[J]. Acta Scientiae Circumstantiae, 2020, 40(11): 3971-3981.]
Outlines

/