Regional Development

Spatiotemporal evolution and driving mechanism of environmental stress of regional development in Ningxia Hui Autonomous Region

  • MA Mingde ,
  • LI Junjie ,
  • XUE Chenhao
Expand
  • 1. School of Management/Editorial Office of Journal, North Minzu University, Yinchuan 750021, Ningxia, China
    2. Yinchuan Construction Land Service Centre, Yinchuan 750004, Ningxia, China
    3. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China

Received date: 2023-06-28

  Revised date: 2023-10-14

  Online published: 2024-07-09

Abstract

Environmental stress caused by regional development has emerged as a critical impediment to the high-quality development of the Yellow River Basin. The Ningxia Hui Autonomous Region, located in the upper reaches of the Yellow River, holds significant ecological status. This study focuses on the Ningxia Hui Autonomous Region, establishing an environmental stress evaluation index system and utilizing the entropy method to systematically calculate the environmental stress index (ESI) across various counties in Ningxia. The results show that during 2012—2020, the minimum ESI value in the county level of Ningxia increased from 0.056359 to 0.091005, the maximum value decreased from 0.948896 to 0.911162, and the average ESI value in the county level of Ningxia decreased from 0.56580 to 0.49762. Overall, Ningxia’s environmental stress level has improved, and the local environmental stress is still tight. Moran’s I index analysis showed a significant spatial correlation between environmental stress during 2012—2020, and the spatial spillover effect of regional development on environmental stress increased, with the spatial aggregation effect becoming more obvious. In addition, the Getis-Ord G* index analysis demonstrated that the distribution of hot and cold spots of environmental stress correlated with economic and social development levels. This paper selected a geographically weighted regression model that could better reflect the change in variable regression coefficient with the trend of geographical location for analysis to identify factors affecting the spatial distribution of environmental stress in Ningxia. The results show that population, urbanization, and energy consumption positively affect environmental stress, while industrial structure and land use have negative effects. Therefore, Ningxia should constantly improve population quality, orderly promote the rational distribution of the population in space, implement a new urbanization strategy, and improve urbanization quality. In addition, Ningxia should make technological improvements to energy-intensive and high-polluting industries to reduce pollutant discharge, accelerate the upgrading of the industrial structure, optimize the land use structure, and continuously raise resource utilization efficiency.

Cite this article

MA Mingde , LI Junjie , XUE Chenhao . Spatiotemporal evolution and driving mechanism of environmental stress of regional development in Ningxia Hui Autonomous Region[J]. Arid Land Geography, 2024 , 47(6) : 1061 -1072 . DOI: 10.12118/j.issn.1000-6060.2023.318

References

[1] 苗鸿, 王效科, 欧阳志云. 中国生态环境胁迫过程区划研究[J]. 生态学报, 2001, 21(1): 7-13.
  [Miao Hong, Wang Xiaoke, Ouyang Zhiyun. Study on regionalization of eco-environmental stress process in China[J]. Acta Ecologica Sinica, 2001, 21(1): 7-13.]
[2] 叶阿忠, 郑航. 经济增长对环境污染的非线性效应研究——基于半参数空间模型的再检验[J]. 生态经济, 2022, 38(4): 117-185.
  [Ye A’zhong, Zheng Hang. Study on non-linear effect of economic growth on environmental pollution: Retest based on semi parametric spatial model[J]. Ecological Economy, 2022, 38(4): 117-185.]
[3] 程开明, 洪真奕. 城市人口聚集度对空气污染的影响效应——基于双边随机前沿模型[J]. 中国人口·资源与环境, 2022, 32(2): 51-62.
  [Cheng Kaiming, Hong Zhenyi. Effect of urban population aggregation index on air pollution: Based on the bilateral stochastic frontier model[J]. China Population, Resources and Environment, 2022, 32(2): 51-62.]
[4] 陈利顶, 孙然好, 刘海莲. 城市景观格局演变的生态环境效应研究进展[J]. 生态学报, 2013, 33(4): 1042-1050.
  [Chen Liding, Sun Ranhao, Liu Hailian. Eco-environmental effects of urban landscape pattern changes: Progresses, problems, and perspectives[J]. Acta Ecologica Sinica, 2013, 33(4): 1042-1050.]
[5] 陈博, 王小平, 刘晶岚, 等. 不同天气下景观生态林内外大气颗粒物质量浓度变化特征[J]. 生态环境学报, 2015, 24(7): 1171-1181.
  [Chen Bo, Wang Xiaoping, Liu Jinglan, et al. Mass concentration variations of airborne particulate matters inside and outside of a landscape ecological forest under different weather conditions[J]. Ecology and Environmental Sciences, 2015, 24(7): 1171-1181.]
[6] 康恒元, 刘玉莲, 李涛. 黑龙江省重点城市AQI指数特征及其与气象要素之关系[J]. 自然资源学报, 2017, 32(4): 692-703.
  [Kang Hengyuan, Liu Yulian, Li Tao. Characteristics of air quality index and its relationship with meteorological factors in key cities of Heilongjiang Province[J]. Journal of Natural Resources, 2017, 32(4): 692-703.]
[7] 杨仁发. 产业集聚能否改善中国环境污染[J]. 中国人口·资源与环境, 2015, 25(2): 23-29.
  [Yang Renfa. Whether industrial agglomeration can reduce environmental pollution or not[J]. China Population, Resources and Environment, 2015, 25(2): 23-29.]
[8] 肖周燕, 李慧慧, 孙乐. 人口与工业集聚对生产和生活污染的影响及空间溢出[J]. 长江流域资源与环境, 2022, 31(4): 851-862.
  [Xiao Zhouyan, Li Huihui, Sun Le. Population and industrial agglomeration’s spatial impact on production & consumption pollution and overflow[J]. Resources and Environment in the Yangtze Basin, 2022, 31(4): 851-862.]
[9] 张维理, 武淑霞, 冀宏杰, 等. 中国农业面源污染形势估计及控制对策I. 21世纪初期中国农业面源污染的形势估计[J]. 中国农业科学, 2004, 37(7): 1008-1017.
  [Zhang Weili, Wu Shuxia, Ji Hongjie, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies: I. Estimation of agricultural non-point source pollution in China in early 21 century[J]. Scientia Agricultura Sinica, 2004, 37(7): 1008-1017.]
[10] 葛继红, 周曙东. 农业面源污染的经济影响因素分析——基于1978—2009年的江苏省数据[J]. 中国农业经济, 2011(5): 72-81.
  [Ge Jihong, Zhou Shudong. An analysis of the economic determinants to agricultural non-point source pollution: Based on data of Jiangsu Province during 1978—2009[J]. Chinese Agricultural Economy, 2011(5): 72-81.]
[11] 朱先磊, 张远航, 曾立民, 等. 北京市大气细颗粒物PM2.5的来源研究[J]. 环境科学研究, 2005, 18(5): 1-5.
  [Zhu Xianlei, Zhang Yuanhang, Zeng Limin, et al. Source identification of ambient PM2.5 in Beijing[J]. Research of Environmental Sciences, 2005, 18(5): 1-5.]
[12] 王跃思, 张军科, 王莉莉, 等. 京津冀区域大气霾污染研究意义、现状及展望[J]. 地球科学进展, 2014, 29(3): 388-396.
  [Wang Yuesi, Zhang Junke, Wang Lili, et al. Researching significance, status and expectation of haze in Beijing-Tianjin-Hebei region[J]. Advances in Earth Science, 2014, 29(3): 388-396.]
[13] 魏复盛, 滕恩江, 吴国平, 等. 我国4个大城市空气PM2.5、PM10污染及其化学组成[J]. 中国环境监测, 2001, 17(增刊1): 1-6.
  [Wei Fusheng, Teng Enjiang, Wu Guoping, et al. Concentrations and elemental components of PM2.5, PM10 in ambient air in four large Chinese cities[J]. Environmental Monitoring in China, 2001, 17(Suppl. 1): 1-6.]
[14] 黄金川, 方创琳. 城市化与生态环境交互耦合机制与规律性分析[J]. 地理研究, 2003, 22(2): 211-220.
  [Huang Jinchuan, Fang Chuanglin. Analysis of coupling mechanism and rules between urbanization and eco-environment[J]. Geographical Research, 2003, 22(2): 211-220.]
[15] 方创琳, 周成虎, 顾朝林, 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 2016, 71(4): 531-550.
  [Fang Chuanglin, Zhou Chenghu, Gu Chaolin, et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations[J]. Acta Geographica Sinica, 2016, 71(4): 531-550.]
[16] 黄蕊, 王铮, 丁冠群, 等. 基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J]. 地理研究, 2016, 35(4): 781-789.
  [Huang Rui, Wang Zheng, Ding Guanqun, et al. Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu Province based on STIRPAT model[J]. Geographical Research, 2016, 35(4): 781-789.]
[17] 杨思存, 霍琳, 王成宝, 等. 基于STIRPAT模型的甘肃省农业碳排放特征分析[J]. 干旱区地理, 2023, 46(9): 1493-1502.
  [Yang Sicun, Huo Lin, Wang Chengbao, et al. Characteristics of agricultural carbon emissions in Gansu Province based on STIRPAT model[J]. Arid Land Geography, 2023, 46(9): 1493-1502.]
[18] 梁涵玮, 倪玥琦, 董亮, 等. 经济增长与资源消费的脱钩关系——基于演化视角的中日韩美比较研究[J]. 中国人口·资源与环境, 2018, 28(5): 8-16.
  [Liang Hanwei, Ni Yueqi, Dong Liang, et al. Decoupling relationship analysis between economic growth and resource consumption in China, Japan, South Korea and the United States[J]. China Population, Resources and Environment, 2018, 28(5): 8-16.]
[19] 张勃, 刘秀丽. 基于ARIMA模型的生态足迹动态模拟和预测——以甘肃省为例[J]. 生态学报, 2011, 31(20): 6251-6260.
  [Zhang Bo, Liu Xiuli. Dynamic ecological footprint simulation and prediction based on ARIMA model: A case study of Gansu Province, China[J]. Acta Ecologica Sinica, 2011, 31(20): 6251-6260.]
[20] 李国璋, 江金荣, 周彩云. 全要素能源效率与环境污染关系研究[J]. 中国人口·资源与环境, 2010, 20(4): 50-56.
  [Li Guozhang, Jiang Jinrong, Zhou Caiyun. Relations between total factor energy efficiency and environmental pollution[J]. China Population, Resources and Environment, 2010, 20(4): 50-56.]
[21] 王立平, 管杰, 张纪东. 中国环境污染与经济增长: 基于空间动态面板数据模型的实证分析[J]. 地理科学, 2010, 30(6): 818-825.
  [Wang Liping, Guan Jie, Zhang Jidong. Environmental pollution and economic growth in China: A dynamic spatial panel data model[J]. Scientia Geographica Sinica, 2010, 30(6): 818-825.]
[22] 林美霞, 吝涛, 邱全毅, 等. 不同类型城市快速扩张区域人工景观对自然景观的生态安全胁迫效应比较[J]. 应用生态学报, 2017, 28(4): 1326-1336.
  [Lin Meixia, Lin Tao, Qiu Quanyi, et al. Comparition of ecological security stress effects of artificial landscapes on natural landscapes in different rapid urban sprawl areas[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1326-1336.]
[23] 贾艳红, 赵军, 南忠仁, 等. 基于熵权法的草原生态安全评价——以甘肃牧区为例[J]. 生态学杂志, 2006, 25(8): 1003-1008.
  [Jia Yanhong, Zhao Jun, Nan Zhongren, et al. Ecological safety assessment of grassland based on entropy-right method: A case study of Gansu pastoral area[J]. Chinese Journal of Ecology, 2006, 25(8): 1003-1008.]
[24] 陈明华, 王哲, 谢琳霄, 等. 中国中部地区高质量发展的时空演变及形成机理[J]. 地理学报, 2023, 78(4): 859-876.
  [Chen Minghua, Wang Zhe, Xie Linxiao, et al. The spatiotemporal pattern evolution and formation mechanism of high-quality development in central China[J]. Acta Geographica Sinica, 2023, 78(4): 859-876.]
[25] 周侃, 伍健雄, 樊杰, 等. 长江经济带环境污染胁迫的驱动因素及空间效应[J]. 环境科学学报, 2021, 41(5): 1996-2004.
  [Zhou Kan, Wu Jianxiong, Fan Jie, et al. Driving factors of environmental pollution stress and their spatial effects in the Yangtze River Economic Belt[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1996-2004.]
[26] 高江波, 焦珂伟, 吴绍洪. 1982—2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3): 534-543.
  [Gao Jiangbo, Jiao Kewei, Wu Shaohong. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982—2013[J]. Acta Geographica Sinica, 2019, 74(3): 534-543.]
[27] 阚博颖, 濮励杰, 徐彩瑶, 等. 基于GWR模型的南京主城区住宅地价空间异质性驱动因素研究[J]. 经济地理, 2019, 39(3): 100-107.
  [Kan Boying, Pu Lijie, Xu Caiyao, et al. Driving factors on the spatial heterogeneity of residential land price in downtown Nanjing based on GWR model[J]. Economic Geography, 2019, 39(3): 100-107.]
[28] 周侃, 樊杰. 中国欠发达地区资源环境承载力特征与影响因素——以宁夏西海固地区和云南怒江州为例[J]. 地理研究, 2015, 34(1): 39-52.
  [Zhou Kan, Fan Jie. Characteristics and influence factors of resources and environment carrying capacity in underdeveloped areas of China[J]. Geographical Research, 2015, 34(1): 39-52.]
[29] 杜习乐, 吕昌河, 王海荣. 土地利用/覆被变化(LUCC)的环境效应研究进展[J]. 土壤, 2011, 43(3): 350-360.
  [Du Xile, Lu Changhe, Wang Hairong. Review: Researches on environmental effects of land use/cover change[J]. Soils, 2011, 43(3): 350-360.]
[30] 王成, 冀萌竹, 代蕊莲, 等. 村镇建设用地扩展与生态环境效应的耦合协同规律及类型甄别——以重庆市荣昌区为例[J]. 地理科学进展, 2022, 41(3): 409-422.
  [Wang Cheng, Ji Mengzhu, Dai Ruilian, et al. Coupling and coordination pattern and type division of village and town construction land expansion and ecological environment effect: A case study of Rongchang District, Chongqing Municipality[J]. Progress in Geography, 2022, 41(3): 409-422.]
[31] 张天鹏, 保万魁, 雷秋良, 等. 1951—2010年中国土壤温度时空变化特征及其影响因素[J]. 地理学报, 2022, 77(2): 589-602.
  [Zhang Tianpeng, Bao Wankui, Lei Qiuliang, et al. Characteristics of spatio-temporal changes in soil temperature in China from 1951 to 2010 and its influencing factors[J]. Acta Geographica Sinica, 2022, 77(2): 589-602.]
[32] 高晓光. 中国高技术产业创新效率影响因素的空间异质效应: 基于地理加权回归模型的实证研究[J]. 世界地理研究, 2016, 25(4): 122-131.
  [Gao Xiaoguang. Spatial heterogeneity effect of the Chinese high technology industry’s innovation efficiency factors[J]. World Regional Studies, 2016, 25(4): 122-131.]
[33] 董又铭, 郭炎, 李志刚, 等. 长江经济带乡村性的时空分异格局及驱动机制[J]. 自然资源学报, 2022, 37(2): 378-395.
  [Dong Youming, Guo Yan, Li Zhigang, et al. Spatio-temporal differentiation and driving mechanism of rurality in the Yangtze River Economic Belt[J]. Journal of Natural Resources, 2022, 37(2): 378-395.]
[34] 陈耀, 张可云, 陈晓东, 等. 黄河流域生态保护和高质量发展[J]. 区域经济评论, 2020(1): 8-22.
  [Chen Yao, Zhang Keyun, Chen Xiaodong, et al. Ecological conservation and high-quality development of the Yellow River Basin[J]. Regional Economic Review, 2020(1): 8-22.]
[35] 文博, 徐聪, 孟霖, 等. 苏南地区生态用地破碎度时空演变及其对建设用地扩张的响应: 基于环境库兹涅茨曲线视角[J]. 资源科学, 2023, 45(8): 1676-1691.
  [Wen Bo, Xu Cong, Meng Lin, et al. Spatiotemporal evolution of ecological land fragmentation and its response to construction land expansion in southern Jiangsu Province: An environmental Kuznets curve perspective[J]. Resources Science, 2023, 45(8): 1676-1691.]
[36] 刘琳轲, 梁流涛, 高攀, 等. 黄河流域生态保护与高质量发展的耦合关系及交互响应[J]. 自然资源学报, 2021, 36(1): 176-195.
  [Liu Linke, Liang Liutao, Gao Pan, et al. Coupling relationship and interactive response between ecological protection and high-quality development in the Yellow River Basin[J]. Journal of Natural Resources, 2021, 36(1): 176-195.]
[37] 金凤君, 马丽, 许堞. 黄河流域产业发展对生态环境的胁迫诊断与优化路径识别[J]. 资源科学, 2020, 42(1): 127-136.
  [Jin Fengjun, Ma Li, Xu Die. Environmental stress and optimized path of industrial development in the Yellow River Basin[J]. Resources Science, 2020, 42(1): 127-136.]
Outlines

/