Biology and Environment

Remote sensing extraction of jujube planting area in Xinjiang based on RF classification optimization and SNIC clustering

  • ZHAO Guobing ,
  • ZHENG Jianghua ,
  • WANG Lei ,
  • GAO Jian ,
  • LUO Lei ,
  • Nigela TUERXUN ,
  • HAN Wanqiang ,
  • GUAN Jingyun
Expand
  • 1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Institute of Modern Forestry, Xinjiang Academy of Forestry Sciences, Urumqi 830063, Xinjiang, China
    3. Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, Xinjiang, China

Received date: 2023-07-23

  Revised date: 2023-10-07

  Online published: 2024-07-09

Abstract

This study aims to efficiently extract the distribution information and planting area of jujube crops in Xinjiang, China, providing essential data support for predicting yield and price, consolidating poverty alleviation achievements, and aiding rural revitalization. Utilizing the Google Earth Engine cloud platform, this research accesses Sentinel-1 radar images, Sentinel-2 optical images, and SRTM terrain data covering Xinjiang. From these data, 44 features including spectral, textural, and terrain attributes are extracted, followed by a feature selection process. The optimized random forest classifier, after hyperparameter tuning, produces a spatial distribution map of Xinjiang’s jujube planting areas with a 10 m resolution for the year 2021. Superpixel clustering method further processes the major jujube planting areas to determine the exact planting extents. The findings are as follows: (1) Employing a simple non-iterative clustering algorithm for classification and post-processing, the identified jujube cultivated area in Xinjiang spans 4253 km², predominantly located in the southern regions of Aksu, Kashgar, Hotan Prefectures, and Bayingolin Mongol Autonomous Prefecture, as well as Turpan and Hami Cities in the east. (2) The accuracy of feature extraction is significantly enhanced through hyperparameter optimization of the random forest classifier, yielding an average overall classification accuracy of 0.86, a Kappa coefficient of 0.82, a producer accuracy for jujube extraction of 0.87, and a user accuracy of 0.80, as assessed via the confusion matrix. (3) Features from the Sentinel-1 polarization band are crucial for jujube information extraction, supplemented effectively by spectral and textural features. Leveraging multisource remote sensing data, this method facilitates rapid acquisition of distribution and area data for jujube planting in Xinjiang, markedly benefiting agricultural modernization, resource conservation, and regional economic development.

Cite this article

ZHAO Guobing , ZHENG Jianghua , WANG Lei , GAO Jian , LUO Lei , Nigela TUERXUN , HAN Wanqiang , GUAN Jingyun . Remote sensing extraction of jujube planting area in Xinjiang based on RF classification optimization and SNIC clustering[J]. Arid Land Geography, 2024 , 47(6) : 1004 -1014 . DOI: 10.12118/j.issn.1000-6060.2023.382

References

[1] Tiecheng B, Nannan Z, Mercatoris B, et al. Jujube yield prediction method combining Landsat 8 vegetation index and the phenological length[J]. Computers and Electronics in Agriculture, 2019, 162: 1011-1027.
[2] 徐翔燕, 侯瑞环, 牛荣. 基于GF-1号的红枣种植面积提取方法[J]. 塔里木大学学报, 2019, 31(3): 32-38.
  [Xu Xiangyan, Hou Ruihuan, Niu Rong. Extraction method of Chinese jujube planting area based on GF-1[J]. Journal of Tarim University, 2019, 31(3): 32-38.]
[3] 徐晗泽宇, 刘冲, 王军邦, 等. Google Earth Engine平台支持下的赣南柑橘果园遥感提取研究[J]. 地球信息科学学报, 2018, 20(3): 396-404.
  [Xu Hanzeyu, Liu Chong, Wang Junbang, et al. Study on extraction of citrus orchard in Gannan region based on Google Earth Engine platform[J]. Journal of Geo-information Science, 2018, 20(3): 396-404.]
[4] 乔海浪. 基于NDVI时间序列重构的经济型人工林时空分布信息提取研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
  [Qiao Hailang. The extraction of spatial and temperal information of economic man-made forests based on NDVI time series[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017.]
[5] Li R, Fang P, Xu W, et al. Classifying forest types over a mountainous area in southwest China with Landsat data composites and multiple environmental factors[J]. Forests, 2022, 13(1): 135, doi: 10.3390/f13010135.
[6] 美合日阿依·莫一丁, 买买提·沙吾提, 李金朝. 基于Sentinel-2时间序列数据及物候特征的棉花种植区提取[J]. 干旱区地理, 2022, 45(6): 1847-1859.
  [Moyidin Mihray, Sawut Mamat, Li Jinzhao. Extraction of cotton planting area based on Sentinel-2 time series data and phenological characteristics[J]. Arid Land Geography, 2022, 45(6): 1847-1859.]
[7] 沈江龙, 郑江华, 尼格拉·吐尔逊, 等. 若羌绿洲特色林果种植信息遥感提取方法适用性分析[J]. 中国农业资源与区划, 2022, 43(2): 206-219.
  [Shen Jianglong, Zheng Jianghua, Tuerxun Nigela, et al. Applicability analysis of remote sensing extraction method for planting information of characteristic forest fruit in Ruoqiang oasis[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(2): 206-219.]
[8] 王来刚, 郭燕, 贺佳, 等. 遥感数据辅助下县域耕地质量评价与空间分布研究[J]. 中国农业资源与区划, 2022, 43(12): 137-146.
  [Wang Laigang, Guo Yan, He Jia, et al. Cultivated land quality evaluation and spatial distribution in Anyang County supported by remote sensing data[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(12): 137-146.]
[9] 杨梅花, 程锦涛, 郭佳星, 等. 新疆城市规模分布与自然地理相关性分析[J]. 干旱区地理, 2022, 45(6): 1958-1967.
  [Yang Meihua, Cheng Jintao, Guo Jiaxing, et al. Correlation analysis of urban scale distribution and physical geography in Xinjiang[J]. Arid Land Geography, 2022, 45(6): 1958-1967.]
[10] 李金叶, 袁强, 蒋慧. 基于区域适应性的特色林果业发展探讨[J]. 新疆农业科学, 2010, 47(4): 741-749.
  [Li Jinye, Yuan Qiang, Jiang Hui. A discussion on development of featured forestry and fruit growing based on the regional adaptability[J]. Xinjiang Agricultural Sciences, 2010, 47(4): 741-749.]
[11] 李曦光, 王蕾, 刘平, 等. 基于MaxEnt模型的新疆红枣生态适宜性与区划分析[J]. 新疆农业科学, 2020, 57(10): 1785-1791.
  [Li Xiguang, Wang Lei, Liu Ping, et al. Study on ecological suitability and regionalization of Xinjiang jujube based on MaxEnt model[J]. Xinjiang Agricultural Sciences, 2020, 57(10): 1785-1791.]
[12] 马战林, 刘昌华, 薛华柱, 等. GEE环境下融合主被动遥感数据的冬小麦识别技术[J]. 农业机械学报, 2021, 52(9): 195-205.
  [Ma Zhanlin, Liu Changhua, Xue Huazhu, et al. Identification of winter wheat by integrating active and passive remote sensing data based on Google Earth Engine platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 195-205.]
[13] 王林江, 吴炳方, 张淼, 等. 关键生育期冬小麦和油菜遥感分类方法[J]. 地球信息科学学报, 2019, 21(7): 1121-1131.
  [Wang Linjiang, Wu Bingfang, Zhang Miao, et al. Winter wheat and rapeseed classification during key growth period by integrating multi-source remote sensing data[J]. Journal of Geo-information Science, 2019, 21(7): 1121-1131.]
[14] 张学艺, 戴小笠, 张玉兰, 等. 用EOS/MODIS-NDVI监测枣树生长状况的分析[J]. 宁夏大学学报(自然科学版), 2012, 33(2): 201-204.
  [Zhang Xueyi, Dai Xiaoli, Zhang Yulan, et al. Study of jujube growth situation to be monitored with EOS/MODIS-NDVI data[J]. Journal of Ningxia University (Natural Science Edition), 2012, 33(2): 201-204.]
[15] 熊皓丽, 周小成, 汪小钦, 等. 基于GEE云平台的福建省10 m分辨率茶园专题空间分布制图[J]. 地球信息科学学报, 2021, 23(7): 1325-1337.
  [Xiong Haoli, Zhou Xiaocheng, Wang Xiaoqin, et al. Mapping the spatial distribution of tea plantations with 10 m resolution in Fujian Province using Google Earth Engine[J]. Journal of Geo-information Science, 2021, 23(7): 1325-1337.]
[16] Yelu Z, Dalei H, Alfredo H, et al. Optical vegetation indices for monitoring terrestrial ecosystems globally[J]. Nature Reviews Earth & Environment, 2022, 3(7): 477-493.
[17] 敖登, 杨佳慧, 丁维婷, 等. 54种植被指数研究进展综述[J]. 安徽农业科学, 2023, 51(1): 13-21, 28.
  [Ao Deng, Yang Jiahui, Ding Weiting, et al. Review of 54 vegetation indices[J]. Anhui Agricultural Sciences, 2023, 51(1): 13-21, 28.]
[18] Jinru X, Baofeng S. Significant remote sensing vegetation indices: A review of developments and applications[J]. Journal of Sensors, 2017: 1-17, doi: 10.1155/2017/1353691.
[19] Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786-804.
[20] Vizzari M. PlanetScope, Sentinel-2, and Sentinel-1 data integration for object-based land cover classification in Google Earth Engine[J]. Remote Sensing, 2022, 14(11): 2628, doi: 10.3390/rs14112628.
[21] Zhao Y, Zhu W, Wei P, et al. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period[J]. Ecological Indicators, 2022, 135: 108529, doi: 10.1016/j.ecolind.2021.108529.
[22] Agarwal S, Nagendra H. Classification of Indian cities using Google Earth Engine[J]. Journal of Land Use Science, 2019, 14(4-6): 425-439.
[23] 马玥, 姜琦刚, 孟治国, 等. 基于随机森林算法的农耕区土地利用分类研究[J]. 农业机械学报, 2016, 47(1): 297-303.
  [Ma Yue, Jiang Qigang, Meng Zhiguo, et al. Classification of land use in farming area based on random forest algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 297-303.]
[24] 何昭欣, 张淼, 吴炳方, 等. Google Earth Engine支持下的江苏省夏收作物遥感提取[J]. 地球信息科学学报, 2019, 21(5): 752-766.
  [He Zhaoxin, Zhang Miao, Wu Bingfang, et al. Extraction of summer crop in Jiangsu based on Google Earth Engine[J]. Journal of Geo-information Science, 2019, 21(5): 752-766.]
[25] Pelletier C, Valero S, Inglada J, et al. Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas[J]. Remote Sensing of Environment, 2016, 187: 156-168.
[26] Loukika K N, Keesara V R, Sridhar V. Analysis of land use and land cover using machine learning algorithms on Google Earth Engine for Munneru River Basin, India[J]. Sustainability, 2021, 13(24): 13758, doi: 10.3390/su132413758.
[27] Tassi A, Vizzari M. Object-oriented LULC classification in Google Earth Engine combining SNIC, GLCM, and machine learning algorithms[J]. Remote Sensing. 2020, 12(22): 3776, doi: 10.3390/rs122-23776.
[28] 孙玮婕, 杨军. 改进的简单非迭代聚类的遥感影像分割研究[J]. 计算机工程与应用, 2021, 57(13): 185-192.
  [Sun Weijie, Yang Jun. Research on remote sensing image segmentation based on improved simple non-iterative clustering[J]. Computer Engineering and Applications, 2021, 57(13): 185-192.]
[29] 黄文静, 蔡兴航, 张严磊, 等. 基于面向对象分类法的陕西佳县大枣种植面积提取研究[J]. 中国中药杂志, 2019, 44(19): 4116-4120.
  [Huang Wenjing, Cai Xinghang, Zhang Yanlei, et al. Research on extraction of Zizyphus jujuba planting area in Jia County of Shaanxi[J]. China Academy of Chinese Medical Sciences, 2019, 44(19): 4116-4120.]
Outlines

/