Climatology and Hydrology

Coupling relationship and influencing factors of water-cropland-grain-cotton system in Tarim River Basin

  • LU Quan ,
  • GAO Huayan ,
  • WANG Pengpeng ,
  • FENG Xiaolin ,
  • YANG Yanxia
Expand
  • 1. College of Economics and Management, Huazhong Agricultural University, Wuhan 430077, Hubei, China
    2. College of Economics and Management, Tarim University, Aral 843300, Xinjiang, China
    3. College of Economics, Xinjiang Institute of Science and Technology, Korla 841000, Xinjiang, China

Received date: 2023-09-11

  Revised date: 2023-11-21

  Online published: 2024-05-30

Abstract

In the arid and ecologically sensitive Tarim River Basin, a vital hub for grain and cotton production in China, the harmonious development of water, arable land, and agricultural resources is crucial for sustainable growth. This study constructs a water-cropland-grain-cotton system model for the basin, evaluates its development index, and assesses the system’s coupling coordination using a coupling coordination degree model. Furthermore, the Fractional Logit model was employed to identify factors influencing the system’s coordinated development. The findings reveal that: (1) The development indices indicate a hierarchy of water system>water-cropland-grain-cotton system>cropland system>grain-cotton system. Post-2013, the development index of the cropland system in Aksu and Kashgar Prefetures surged, surpassing those of the combined water-cropland-grain-cotton system and the individual water system. Changes in other areas were minimal. (2) The coordination level of the basin’s coupled system ranges from 0.475 to 0.680, indicating a transition from minimal to basic coordination. Kashgar exhibits the highest coordination, while Kizilsu Kirgiz Autonomous Prefecture the lowest. This index, after an initial gradual increase, experienced a notable decline post-2017, particularly in the Aksu Prefecture. (3) The number of reservoirs, general public budget expenditure, and population size emerge as critical factors influencing the system’s coordination. An increase of one unit in these variables corresponds to a rise in the coupling coordination degree by 1.0%, 21.0%, and 35.6%, respectively.

Cite this article

LU Quan , GAO Huayan , WANG Pengpeng , FENG Xiaolin , YANG Yanxia . Coupling relationship and influencing factors of water-cropland-grain-cotton system in Tarim River Basin[J]. Arid Land Geography, 2024 , 47(5) : 820 -829 . DOI: 10.12118/j.issn.1000-6060.2023.496

References

[1] Mingaleva Z, Shaidurova N, Prajová V. The role of technoparks in technological upgrading of the economy: The example of agricultural production[J]. Management Systems in Production Engineering, 2018, 26(4): 241-245.
[2] 王婷, 王芝潇, 毛德华. 中国主要粮食作物虚拟水-虚拟耕地资源时空匹配格局[J]. 世界农业, 2019(10): 71-79, 110.
  [Wang Ting, Wang Zhixiao, Mao Dehua. Spatial and temporal match pattern of virtual water versus virtual cultivated land of main grain crops in China[J]. World Agriculture, 2019(10): 71-79, 110. ]
[3] 王婷, 毛德华. 中国主要粮食作物虚拟水-虚拟耕地复合系统利用评价及耦合协调分析[J]. 水资源与水工程学报, 2020, 31(4): 40-49, 56.
  [Wang Ting, Mao Dehua. Evaluation and coupling coordination analysis of virtual water-virtual cultivated land system of main grain crops in China[J]. Journal of Water Resources & Water Engineering, 2020, 31(4): 40-49, 56. ]
[4] 邓军, 马泉来, 卫华鹏, 等. 粮食安全视角下河南省淮河流域耕地资源时空演变[J]. 水土保持研究, 2021, 28(4): 390-396.
  [Deng Jun, Ma Quanlai, Wei Huapeng, et al. Spatial-temporal evolution of cultivated land resources in Huai River Basin of Henan Province from the perspective of food security[J]. Research of Soil and Water Conservation, 2021, 28(4): 390-396. ]
[5] 张小允, 鲍洁, 许世卫. 基于熵权TOPSIS模型的中国粮食安全评价研究[J]. 中国农业资源与区划, 2023, 44(4): 35-44.
  [Zhang Xiaoyun, Bao Jie, Xu Shiwei. Research on the evaluation of China’s food security based on entropy weight TOPSIS model[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(4): 35-44. ]
[6] Zhang C, Chen X X, LI Y, et al. Water-energy-food nexus: Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195(10): 625-639.
[7] White D J, Hubacke K, Feng K S, et al. The water-energy-food nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis[J]. Applied Energy, 2018, 210: 550-567.
[8] Simpson G B, Jewitt G P W. The development of the water-energy-food nexus as a framework for achieving resource security: A review[J]. Frontiers in Environmental Science, 2019, 7: 00008, doi: 10.3389/fenvs.2019.00008.
[9] Niva V L, Cai J L, Taka M J, et al. China’s sustainable water-energy-food nexus by 2030: Impacts of urbanization on sectoral water demand[J]. Journal of Cleaner Production, 2019, 25l(1): e119755, doi: 10.1016/j.jclepro.2019.119755.
[10] 向雁. 东北地区水-耕地-粮食关联研究[D]. 北京: 中国农业科学院, 2020.
  [Xiang Yan. Study on water-land-food (WLF) nexus in northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. ]
[11] 李成宇, 张士强. 中国省际水-能源-粮食耦合协调度及影响因素研究[J]. 中国人口·资源与环境, 2020, 30(1): 120-128.
  [Li Chengyu, Zhang Shiqiang. Coupling coordination degree of water-energy-grain and its influencing factors in China[J]. China Population, Resources and Environment, 2020, 30(1): 120-128. ]
[12] 汪中华, 田宇薇. 我国水-能源-粮食耦合关系及影响因素[J]. 南水北调与水利科技, 2022, 20(2): 243-252.
  [Wang Zhonghua, Tian Yuwei. Coupling relationship between water, energy and grain and its influencing factors in China[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(2): 243-252. ]
[13] Lu Q, Yang Y, Li B, et al. Coupling relationship and influencing factors of the water-energy-cotton system in Tarim River Basin[J]. Agronomy, 2022, 12(10): 2333, doi: 10.3390/agronomy12102333.
[14] Guo H W, Xu H L, Ling H B. Study of ecological water transfer mode and ecological compensation scheme of the Tarim River Basin in dry years[J]. Journal of Natural Resources, 2017, 32(10): 1705-1717.
[15] Zhao S J. Evaluation of ecological environmental carrying capacity of the Tarim River Basin[J]. Water Conservancy Science and Technology and Economy, 2018, 24(1): 1-7.
[16] Zuo Q T, Wu B B, Zhang W, et al. A method of water distribution in transboundary rivers and the new calculation scheme of the Yellow River water distribution[J]. Resources Science, 2020, 42(1): 37-45.
[17] 李玉芳, 刘海隆, 刘洪光. 塔里木河流域水资源脆弱性评价[J]. 中国农村水利水电, 2014(4): 90-93.
  [Li Yufang, Liu Hailong, Liu Hongguang. Water resources fragility assessment of the Tarim River valley[J]. China Rural Water and Hydropower, 2014(4): 90-93. ]
[18] 王光焰, 王远见, 桂东伟. 塔里木河流域水资源研究进展[J]. 干旱区地理, 2018, 41(6): 1151-1159.
  [Wang Guangyan, Wang Yuanjian, Gui Dongwei. Research progress of water resources in Tarim River Basin[J]. Arid Land Geography, 2018, 41(6): 1151-1159. ]
[19] Huang D C, Ren Y P, Zhang C Z. Effect of utilization efficiency of water resources on human-water harmony under intensity-total control[J]. Journal of Economics of Water Resources, 2019, 37(2): 1-7.
[20] 陈亚宁, 郝兴明, 陈亚鹏, 等. 新疆塔里木河流域水系连通与生态保护对策研究[J]. 中国科学院院刊, 2019, 34(10): 1156-1164.
  [Chen Yaning, Hao Xingming, Chen Yapeng, et al. Study on water system connectivity and ecological protection countermeasures of Tarim River Basin in Xinjiang[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(10): 1156-1164. ]
[21] 陈磊, 梁新平. 基于改进综合赋权法的塔里木河流域“三源一干”水资源承载力评价[J]. 节水灌溉, 2019(1): 72-75, 83.
  [Chen Lei, Liang Xinping. Evaluation of water resources carrying capacity of “three sources and one trunk” in Tarim River Basin based on improved comprehensive weighting method[J]. Water Saving Irrigation, 2019(1): 72-75, 83. ]
[22] 艾克热木·阿布拉, 王月健, 凌红波, 等. 塔里木河流域水资源变化趋势及用水效率分析[J]. 石河子大学学报(自然科学版), 2019, 37(1): 112-120.
  [Abula Aikeremu, Wang Yuejian, Ling Hongbo, et al. Water resources change trend and water use efficiency analysis in Tarim River Basin[J]. Journal of Shihezi University (Natural Science Edition), 2019, 37(1): 112-120. ]
[23] Kelimu, Jiang F R. Present situation of water resources endowment, development and utilization and long-term strategic countermeasures in Xinjiang[J]. Water Resources and Hydropower Engineering, 2019, 50(12): 57-64.
[24] Zuo Q T, Zhang Z Z, Wu B B. Evaluation of water resources carrying capacity of nine provinces in Yellow River Basin based on combined weight TOPSIS model[J]. Water Resources Protection, 2020, 36(2): l-7.
[25] 李星, 左其亭, 韩淑颖, 等. 塔里木河流域水资源适应性利用能力评价及调控[J]. 水资源保护, 2021, 37(2): 63-68.
  [Li Xing, Zuo Qiting, Han Shuying, et al. Evaluation and regulation of water resources adaptive utilization capacity in Tarim River Basin[J]. Water Resources Protection, 2021, 37(2): 63-68. ]
[26] 魏光辉. 新疆塔里木河流域水资源与生态安全的几点思考[J]. 中国水利, 2021(5): 28-30.
  [Wei Guanghui. Considerations on water resources and ecological security in the Tarim River Basin of Xinjiang[J]. China Water Resources, 2021(5): 28-30. ]
[27] 刘夏, 张曼, 徐建华, 等. 基于系统动力学模型的塔里木河流域水资源承载力研究[J]. 干旱区地理, 2021, 44(5): 1407-1416.
  [Liu Xia, Zhang Man, Xu Jianhua, et al. Study on water resources carrying capacity of Tarim River Basin based on system dynamics model[J]. Arid Land Geography, 2021, 44(5): 1407-1416. ]
[28] 李原园, 李云玲, 何君. 新发展阶段中国水资源安全保障战略对策[J]. 水利学报, 2021, 52(11): 1340-1346, 1354.
  [Li Yuanyuan, Li Yunling, He Jun. Strategic countermeasures of China’s water resources security in the new development stage[J]. Journal of Hydraulic Engineering, 2021, 52(11): 1340-1346, 1354. ]
[29] 刘雨曈. 塔里木河流域水土流失动态变化分析[J]. 水生态学杂志, 2022, 43(3): 105-112.
  [Liu Yutong. Soil alteration and water loss in the Tarim River Basin[J]. Journal of Hydroecology, 2022, 43(3): 105-112. ]
[30] Lu Q, Liu F J, Li Y J, et al. Study on the relationship between water resources utilization and economic growth in Tarim River Basin from the perspective of water footprint[J]. Water, 2022, 14(10): 1655, doi: 10.3390/W14101655.
[31] 孙克, 张信为, 聂坚, 等. 中国省域水资源利用绩效评价及空间分异和驱动因素分析[J]. 水资源保护, 2023, 39(4): 102-110, 186.
  [Sun Ke, Zhang Xinwei, Nie Jian, et al. Evaluation of provincial water resources utilization performance in China and its spatial differentiation and driving factor analysis[J]. Water Resources Protection, 2023, 39(4): 102-110, 186. ]
[32] 粟晓玲, 刘雨翰, 姜田亮, 等. 西北地区陆地生态系统未来生态需水量预估[J]. 水资源保护, 2023, 39(4): 9-18, 78.
  [Su Xiaoling, Liu Yuhan, Jiang Tianliang, et al. Prediction of future ecological water demand of terrestrial ecosystem in northwest China[J]. Water Resources Protection, 2023, 39(4): 9-18, 78. ]
[33] 祁泓锟, 焦菊英, 严晰芹, 等. 近40年塔里木河流域水沙演变及其空间分异特征[J]. 水土保持研究, 2022, 29(5): 117-123.
  [Qi Hongkun, Jiao Juying, Yan Xiqin, et al. Runoff and sediment evolution and its spatial differentiation in the Tarim River Basin in recent 40 years[J]. Research of Soil and Water Conservation, 2022, 29(5): 117-123. ]
[34] 吴青松, 马军霞, 左其亭, 等. 塔里木河流域水资源-经济社会-生态环境耦合系统和谐程度量化分析[J]. 水资源保护, 2021, 37(2): 55-62.
  [Wu Qingsong, Ma Junxia, Zuo Qiting, et al. Quantitative analysis on harmony degree of water resources-economic society-ecological environment coupling system in the Tarim River Basin[J]. Water Resources Protection, 2021, 37(2): 55-62. ]
[35] 周瑞涛, 郑航, 刘悦忆. 塔里木河流域的绿洲迁移研究[J]. 水利水电技术, 2021, 52(2): 155-164.
  [Zhou Ruitao, Zheng Hang, Liu Yueyi. Understading the evolution of the Tarim River oasis[J]. Water Resources and Hydropower Engineering, 2021, 52(2): 155-164. ]
[36] Li B, Wang R, Lu Q. Land tenure and cotton farmers’ land improvement: Evidence from state-owned farms in Xinjiang, China[J]. International Journal of Environmental Research and Public Health, 2022, 19: 117, doi: 10.3390/ijerph19010117.
[37] 王希义, 徐海量, 潘存德. 塔里木河流域耕地面积动态变化特征及驱动因子[J]. 水土保持通报, 2017, 37(2): 327-332.
  [Wang Xiyi, Xu Hailiang, Pan Cunde. Change features of cultivated land resources and its driving factors in Tarim River Basin[J]. Bulletin of Soil and Water Conservation, 2017, 37(2): 327-332. ]
[38] 焦伟, 刘新平, 张琳, 等. 塔里木河流域土地开发的生态响应研究[J]. 干旱区地理, 2018, 41(6): 1396-1404.
  [Jiao Wei, Liu Xinping, Zhang Lin, et al. Ecological response to the land development in Tarim River Basin[J]. Arid Land Geography, 2018, 41(6): 1396-1404. ]
[39] 高玥, 刘新平. 干旱区内陆河流域土地利用结构时空变化分析——以塔里木河流域为例[J]. 湖北农业科学, 2019, 58(7): 62-66.
  [Gao Yue, Liu Xinping. Spatial and temporal variation of land use structure in inland river basin of arid area: Take the Tarim River Basin as an example[J]. Hubei Agricultural Sciences, 2019, 58(7): 62-66. ]
[40] 丛晓男. 耦合度模型的形式、性质及在地理学中的若干误用[J]. 经济地理, 2019, 39(4): 18-25.
  [Cong Xiaonan. Expression and mathematical property of coupling model, and its misuse in geographical science[J]. Economic Geography, 2019, 39(4): 18-25. ]
[41] 苏振东, 洪玉娟, 刘璐瑶. 政府生产性补贴是否促进了中国企业出口?——基于制造业企业面板数据的微观计量分析[J]. 管理世界, 2012(5): 24-42.
  [Su Zhendong, Hong Yujuan, Liu Luyao. Have the production-related subsidies of the government promoted the export of China’s firms?[J]. Journal of Management World, 2012(5): 24-42. ]
Outlines

/