Ecology and Environment

Scenario projection analysis of ecosystem carbon stocks in the Tarim River Basin

  • FU Wei ,
  • XIA Wenhao ,
  • FAN Tongsheng ,
  • ZOU Zhen ,
  • HUO Yu
Expand
  • 1. College of Economics and Management, Tarim University, Alar 843300, Xinjiang, China
    2. College of Natural Resources and Geodesy, Nanning Normal University, Nanning 530001, Guangxi, China

Received date: 2023-06-11

  Revised date: 2023-10-24

  Online published: 2024-05-17

Abstract

Land use patterns are important factors causing carbon stock changes in terrestrial ecosystems and play a critical role in maintaining the stability of carbon stock levels. This study uses the coupled PLUS-InVEST model to assess and predict land use and carbon stock changes in the Tarim River Basin, Xinjiang, China from 1980 to 2020. Four scenarios of natural development, ecological protection, arable land protection, and urban development were established. The land use and carbon stock trends in the study area in 2030 were predicted by scenarios, and the effects of land use changes on carbon stock were investigated. The results are as follows: (1) The area of cultivated land, construction land, and unutilized land in the Tarim River Basin increased significantly during the 40-a period, whereas the area of forest land, grassland, and water decreased. (2) Carbon stock exhibited an overall upward trend from 1980 to 2020, with an overall increase of 22.66×106 t. The area of carbon stock increase was mainly distributed on the main stream of the Tarim River and its branches during the 40-a period. Unutilized land and grassland are the main carbon reservoirs in the Tarim River Basin, accounting for 24.77% and 19.37% of the total carbon stock, respectively. (3) The different scenarios showed that the loss of carbon stock after 2020 was larger and the rate of loss gradually accelerated, the carbon stock reduction area was mainly distributed in the middle and southwest parts of the study area, and the transfer of grassland to unutilized land and forest land to grassland in the future was the main reason for carbon stock loss. The carbon stock loss under the four scenarios was reduced by 0.0475×108 t, 0.0051×108 t, 0.0285×108 t and 0.0473×108 t, respectively. (4) The transfer of cropland to woodland, grassland to woodland, watershed to grassland and unutilized land, and unutilized land to cropland and grassland are conducive to carbon storage. Therefore, in future planning, we should combine arable land and ecological protection, control the expansion of construction land to the outside while ensuring the growth of the local economy, increase carbon storage, and build up the strength to achieve the carbon peaking and carbon neutrality goals.

Cite this article

FU Wei , XIA Wenhao , FAN Tongsheng , ZOU Zhen , HUO Yu . Scenario projection analysis of ecosystem carbon stocks in the Tarim River Basin[J]. Arid Land Geography, 2024 , 47(4) : 634 -647 . DOI: 10.12118/j.issn.1000-6060.2023.274

References

[1] 张凯琪, 陈建军, 侯建坤, 等. 耦合InVEST与GeoSOS-FLUS模型的桂林市碳储量可持续发展研究[J]. 中国环境科学, 2022, 42(6): 2799-2809.
  [Zhang Kaiqi, Chen Jianjun, Hou Jiankun, et al. Study on sustainable development of carbon storage in Guilin coupled with InVEST and GeoSOS-FLUS model[J]. China Environmental Science, 2022, 42(6): 2799-2809. ]
[2] 夏文浩, 王铭扬, 姜磊. 新疆农业碳排放强度时空变化趋势与收敛分析[J]. 干旱区地理, 2023, 46(7): 1145-1154.
  [Xia Wenhao, Wang Mingyang, Jiang Lei. Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1145-1154. ]
[3] 孙方虎, 方凤满, 洪炜林, 等. 基于PLUS和InVEST模型的安徽省碳储量演化分析与预测[J]. 水土保持学报, 2023, 37(1): 151-158.
  [Sun Fanghu, Fang Fengman, Hong Weilin, et al. Evolution analysis and prediction of carbon storage in Anhui Province based on PLUS and InVEST model[J]. Journal of Soil and Water Conservation, 2023, 37(1): 151-158. ]
[4] Cantarello E, Newton A C, Hill R A. Potential effects of future land-use change on regional carbon stocks in the UK Science Direct[J]. Environmental Science & Policy, 2011, 14(1): 40-52.
[5] 孙欣欣, 薛建辉, 董丽娜. 基于PLUS模型和InVEST模型的南京市生态系统碳储量时空变化与预测[J]. 生态与农村环境学报, 2023, 39(1): 41-51.
  [Sun Xinxin, Xue Jianhui, Dong Lina. Spatiotemporal change and prediction of carbon storage in Nanjing ecosystem based on PLUS model and InVEST model[J]. Journal of Ecology and Rural Environment, 2023, 39(1): 41-51. ]
[6] 张海青, 任婷. 基于PLUS模型的空间格局演变特征及驱动力研究——以辽宁省北镇市为例[J]. 沈阳建筑大学学报(社会科学版), 2022, 24(3): 230-238.
  [Zhang Haiqing, Ren Ting. Study on spatial pattern evolution characteristics and driving forces based on PLUS model: Taking Beizhen City in Liaoning Province as an example[J]. Journal of Shenyang Jianzhu University (Social Science Edition), 2022, 24(3): 230-238. ]
[7] Lei T, Yu T, Wenxue F, et al. Dynamic simulation of land use/cover change and assessment of forest ecosystem carbon storage under climate change scenarios in Guangdong Province, China[J]. Remote Sensing, 2022, 14(10): 2330-2330.
[8] 裴亮, 陈晨, 戴激光, 等. 基于马尔科夫模型的大凌河流域土地利用/覆被变化趋势研究[J]. 土壤通报, 2017, 48(3): 525-531.
  [Pei Liang, Chen Chen, Dai Jiguang, et al. Research on forecast trend of land use and land cover change in Daling River Basin based on Markov model[J]. Chinese Journal of Soil Science, 2017, 48(3): 525-531. ]
[9] 李玥康, 姚斯洋, 闫峰, 等. 基于改进元胞自动机-马尔可夫模型的土地利用格局演变模拟与预测: 以新余市为例[J]. 水利水电技术(中英文), 2022, 53(4): 71-83.
  [Li Yuekang, Yao Siyang, Yan Feng, et al. Improved cellular automata-Markov model-based simulation and prediction on evolution of land use pattern: A case of Xinyu City[J]. Water Conservancy and Hydropower Technology (Chinese and English), 2022, 53(4): 71-83. ]
[10] 高周冰, 王晓瑞, 隋雪艳, 等. 基于FLUS和InVEST模型的南京市生境质量多情景预测[J]. 农业资源与环境学报, 2022, 39(5): 1001-1013.
  [Gao Zhoubing, Wang Xiaorui, Sui Xueyan, et al. Multi-scenario prediction of habitat quality in Nanjing based on FLUS and InVEST models[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 1001-1013. ]
[11] 曹祺文, 顾朝林, 管卫华. 基于土地利用的中国城镇化SD模型与模拟[J]. 自然资源学报, 2021, 36(4): 1062-1084.
  [Cao Qiwen, Gu Chaolin, Guan Weihua. China’s urbanization SD modelling and simulation based on land use[J]. Journal of Natural Resources, 2021, 36(4): 1062-1084. ]
[12] 顾汉龙, 马天骏, 钱凤魁, 等. 基于CLUE-S模型县域土地利用情景模拟与碳排放效应分析[J]. 农业工程学报, 2022, 38(9): 288-296.
  [Gu Hanlong, Ma Tianjun, Qian Fengkui, et al. County land use scenario simulation and carbon emission effect analysis using CLUE-S model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 288-296. ]
[13] 蒋小芳, 段翰晨, 廖杰, 等. 基于PLUS-SD耦合模型的黑河流域中游甘临高地区土地利用研究[J]. 干旱区研究, 2022, 39(4): 1246-1258.
  [Jiang Xiaofang, Duan Hanchen, Liao Jie, et al. Land use in the Gan-Lin-Gao region of middle reaches of Heihe River Basin based on a PLUS-SD coupling model[J]. Arid Zone Research, 2022, 39(4): 1246-1258. ]
[14] 牛统莉, 熊立华, 陈杰, 等. 基于PLUS模型的长江流域土地利用变化模拟与多情景预测[J]. 武汉大学学报(工学版), 2024, 57(2): 129-141.
  [Niu Tongli, Xiong Lihua, Chen Jie, et al. Land use simulation and multi-scenario prediction of the Yangtze River Basin based on PLUS model[J]. Engineering Journal of Wuhan University, 2024, 57(2): 129-141. ]
[15] 谢向东, 林孝松, 王莹, 等. 基于PLUS模型的重庆市南川区土地利用多情景模拟[J]. 长江科学院院报, 2023, 40(6): 86-92.
  [Xie Xiangdong, Lin Xiaosong, Wang Ying, et al. Multi-scenario simulation of land use in Nanchuan District, Chongqing City based on PLUS model[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(6): 86-92. ]
[16] 李俊, 杨德宏, 吴锋振, 等. 基于PLUS与InVEST模型的昆明市土地利用变化动态模拟与碳储量评估[J]. 水土保持通报, 2023, 43(1): 378-387.
  [Li Jun, Yang Dehong, Wu Fengzhen, et al. Dynamic simulation of land use changes and assessment of carbon storage in Kunming City based on PLUS and InVEST models[J]. Bulletin of Soil and Water Conservation, 2023, 43(1): 378-387. ]
[17] 许源溪, 周波, 苏杰. 基于InVEST模型的四川省宜宾市2010—2020年碳承载力评价[J]. 水土保持通报, 2023, 43(1): 350-358.
  [Xu Yuanxi, Zhou Bo, Su Jie. Carbon carrying capacity evaluation for Yibin City of Sichuan Provice based on the InVEST model during 2010—2020[J]. Journal of Soil and Water Conservation, 2023, 43(1): 350-358. ]
[18] 李月, 罗红芬. 基于InVEST模型的黔中喀斯特地区建设用地扩张碳储量变化研究[J]. 西北林学院学报, 2024, 39(1): 185-192, 199.
  [Li Yue, Luo Hongfen. Carbon storage change of construction land expansion in central Guizhou’s karst region based on InVEST model[J]. Journal of Northwest Forestry University, 2024, 39(1): 185-192, 199. ]
[19] 杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4): 175-182.
  [Yang Lianwei, Zhao Juan, Zhu Jiatian, et al. Spatial and temporal variation and prediction of ecosystem carbon storage in Xi’an based on PLUS and InVEST model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175-182. ]
[20] 张鹏, 李良涛, 苏玉姣, 等. 基于PLUS和InVEST模型的邯郸市碳储量空间分布特征研究[J]. 水土保持通报, 2023, 43(3): 338-348.
  [Zhang Peng, Li Liangtao, Su Yujiao, et al. Spatial and temporal distribution characteristics of carbon storage in Handan City based on PLUS and InVEST models[J]. Bulletin of Soil and Water Conservation, 2023, 43(3): 338-348. ]
[21] 林彤, 杨木壮, 吴大放, 等. 基于InVEST-PLUS模型的碳储量空间关联性及预测: 以广东省为例[J]. 中国环境科学, 2022, 42(10): 4827-4839.
  [Lin Tong, Yang Muzhuang, Wu Dafang, et al. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model: A case study in Guangdong Province[J]. China Environmental Science, 2022, 42(10): 4827-4839. ]
[22] 王璐晨, 韩海辉, 张俊, 等. 塔里木河流域土地利用及人类活动强度的时空演化特征研究[J]. 中国地质, 2024, 51(1): 203-220.
  [Wang Luchen, Han Haihui, Zhang Jun, et al. Spatio-temporal evolution of land use and human activity intensity in the Tarim River Basin, Xinjiang[J]. Geology in China, 2024, 51(1): 203-220. ]
[23] 唐芳. 塔里木河中下游土地利用时空变化分析[D]. 乌鲁木齐: 新疆农业大学, 2023.
  [Tang Fang. Spatiotemporal variation of land use in the middle and lower reaches of Tarim River[D]. Urumqi: Xinjiang Agricultural University, 2023. ]
[24] 楚智, 徐长春, 罗映雪, 等. 基于生态保护红线管理的塔里木河流域土地利用模拟及生态效益评价[J]. 生态学报, 2021, 41(18): 7380-7392.
  [Chu Zhi, Xu Changchun, Luo Yingxue, et al. Land use simulation and ecological benefit evaluation in the Tarim River Basin based on ecological protection red line management[J]. Acta Ecologica Sinica, 2021, 41(18): 7380-7392. ]
[25] 吝静, 赵成义, 马晓飞, 等. 基于生态系统服务价值的塔里木河干流土地利用结构优化[J]. 干旱区研究, 2021, 38(4): 1140-1151.
  [Lin Jing, Zhao Chengyi, Ma Xiaofei, et al. Optimization of land use structure based on ecosystem service value in the mainstream of Tarim River[J]. Arid Zone Research, 2021, 38(4): 1140-1151. ]
[26] 郭靖, 王光焰, 徐生武, 等. 水资源管理增强下的塔里木河上中游碳储量动态评估[J]. 干旱区研究, 2021, 38(3): 589-599.
  [Guo Jing, Wang Guangyan, Xu Shengwu, et al. Dynamic assessment of Tarim River carbon storage under enhanced water resources management[J]. Arid Zone Research, 2021, 38(3): 589-599. ]
[27] 陈理庭, 蔡海生, 张婷, 等. 基于Markov-FLUS模型的饶河流域土地利用多情景模拟分析[J]. 生态学报, 2022, 42(10): 3947-3958.
  [Chen Liting, Cai Haisheng, Zhang Ting, et al. Land use multi-scenario simulation analysis of Rao River Basin based on Markov-FLUS model[J]. Acta Ecologica Sinica, 2022, 42(10): 3947-3958. ]
[28] 朱文博, 张静静, 崔耀平, 等. 基于土地利用变化情景的生态系统碳储量评估: 以太行山淇河流域为例[J]. 地理学报, 2019, 74(3): 446-459.
  [Zhu Wenbo, Zhang Jingjing, Cui Yaoping, et al. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin[J]. Acta Geographica Sinica, 2019, 74(3): 446-459. ]
[29] 赵宁. 基于InVEST模型的渤海湾沿岸土地系统碳储量及生境质量评估[D]. 保定: 河北农业大学, 2020.
  [Zhao Ning. Assessment of carbon reserves and habitat quality of land system along Bohai Bay based on InVEST model[D]. Baoding: Hebei Agricultural University, 2020. ]
[30] 夏婷婷. 塔里木河流域土地利用变化及驱动因素分析[D]. 乌鲁木齐: 新疆农业大学, 2023.
  [Xia Tingting. Analysis of land use change and drivers in the Tarim River Basin[D]. Urumqi: Xinjiang Agricultural University, 2023. ]
[31] 王绮, 魏冶. 基于非经济生物量的中国耕地碳汇空间分布研究[J]. 资源开发与市场, 2017, 33(8): 928-932.
  [Wang Qi, Wei Ye. Spatial pattern of arable land carbon sinks in China from the perspective of non-economic biomass[J]. Resource Development & Market, 2017, 33(8): 928-932. ]
[32] 周圣杰. 土地利用数据对动态植被模式模拟中国陆地生态系统碳源汇影响的研究[D]. 南京: 南京信息工程大学, 2022.
  [Zhou Shengjie. Study on the influence of land use data on carbon sources of terrestrial ecosystems in China[D]. Nanjing: Nanjing University of Information Science and Technology, 2022. ]
[33] 颜安. 新疆土壤有机碳/无机碳空间分布特征及储量估算[D]. 北京: 中国农业大学, 2015.
  [Yan An. Spatial distribution characteristics and reserve estimation of organic/inorganic carbon in Xinjiang soil[D]. Beijing: China Agricultural University, 2015. ]
[34] Liang X, Guan Q F, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569, doi: 10.1016/j.compenvurbsys.2020.101569.
[35] 杨玉海, 朱成刚, 汪洋, 等. 塔里木河下游生态输水对胡杨林生态系统碳循环的影响[J]. 干旱区地理, 2021, 44(3): 637-642.
  [Yang Yuhai, Zhu Chenggang, Wang Yang, et al. Effects of ecological water conveyance on carbon cycle of Populus euphratica forest ecosystem in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 637-642. ]
[36] 刘华, 董玲, 艾吉尔·阿不拉, 等. 塔里木河中游柽柳灌丛碳储量及其价值评估[J]. 江西农业大学学报, 2015, 37(3): 484-489.
  [Liu Hua, Dong Ling, Abula Ajier, et al. Value of carbon sequestration of Tamarix in the midstream of the Tarim River[J]. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(3): 484-489. ]
[37] 叶朝霞, 何秉宇, 董秀梅. 塔里木河下游生态环境整治与生态效应分析[J]. 新疆地质, 2005(1): 55-58.
  [Ye Zhaoxia, He Bingyu, Dong Xiumei. Analysis of ecological environment improvement and ecological effect in the lower reaches of Tarim River[J]. Xinjiang Geology, 2005(1): 55-58. ]
[38] 柯新利, 唐兰萍. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响: 以湖北省为例[J]. 生态学报, 2019, 39(2): 672-683.
  [Ke Xinli, Tang Lanping. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province, China[J]. Acta Ecologlca Sinica, 2019, 39(2): 672-683. ]
[39] Thompson T M. Modeling the climate and carbon systems to estimate the social cost of carbon[J]. Wiley Interdisciplinary Reviews Climate Change, 2018, 9(5): e532, doi: 10.1002/wcc.532.
[40] Wen H X, Yi G M, Ya J G, et al. Spatial-temporal pattern and spatial convergence of carbon emission intensity of rural energy consumption in China[J]. Environmental Science and Pollution Research International, 2024, 31(5): 7751-7774.
Outlines

/