Ecology and Environment

Advances in climate change and its impact on the stability of mountain forest ecosystems and hydrological processes in arid regions

  • CHANG Xuexiang ,
  • ZHAO Wenzhi ,
  • TIAN Quanyan
Expand
  • Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences; Linze Inland River Basin Research Station, China Ecosystem Research Network; Key Laboratory of Ecohydrology of Inland River Basin, CAS; Key Laboratory of EcologicalSafety and Sustainable Development in Arid Lands, Lanzhou 730000, Gansu, China

Received date: 2023-04-13

  Revised date: 2023-08-01

  Online published: 2024-03-14

Abstract

Water is essential for the formation of oases in arid areas. Water source districts maintain the existence of oases, facilitate sustainable development of the local economy, and ensure the stability of the ecological environment in the mountains of the northwest arid area. Forest ecosystems are important for water conservation and are called a “green reservoirs” in mountainous areas. Climate change is anticipated to alter the structure and composition of terrestrial ecosystems, affecting elements of the terrestrial water cycle and exacerbating water shortages, thereby posing a threat to arid oases. This study briefly reviews and summarizes the research progress and existing problems related to climate change and their impact on the stability and hydrological processes of mountain forest ecosystems in arid regions. In the future, it also suggests that the trend of climate change needs to be evaluated in arid mountains with an enhanced spatial resolution of 1 km. A comprehensive study of the impact of climate change on the stability of mountain forest ecosystems and hydrological processes in arid areas is recommended, considering multiple scales, interfaces, disciplines, and methods. This approach aims to promote the development of mountain ecology in arid areas and to lay the theoretical foundation for arid area management departments to adapt to and mitigate the impact of climate change. It further emphasizes the need to scientifically formulate management plans for climate change conditions and realize effective water resource management, thereby promoting sustainable environmental and socioeconomic development under climate change conditions in arid regions.

Cite this article

CHANG Xuexiang , ZHAO Wenzhi , TIAN Quanyan . Advances in climate change and its impact on the stability of mountain forest ecosystems and hydrological processes in arid regions[J]. Arid Land Geography, 2024 , 47(2) : 228 -236 . DOI: 10.12118/j.issn.1000-6060.2023.168

References

[1] IPCC. Summary for policymakers[C]// StockerT F, QinD, PlattnerG K, et al. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
[2] IPCC. Global warming of 1.5 ℃[C]// Masson-DelmotteV, ZhaiP, P?rtnerH, et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 ℃ Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge: Cambridge University Press, 2018
[3] IPCC. Summary for policymakers[C]// Masson-DelmotteV, ZhaiP, PiraniA, et al. Climate Change 2021: The Physical Science Basis:Contribution of Working Group I to the Sixth Assessment Report, of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
[4] Qin D, Plattner G K, Tignor M, et al. Climate change 2013: The physical science basis[M]. Cambridge: Cambridge University Press, 2014.
[5] 陈亚宁, 李稚, 范煜婷, 等. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9): 1295-1304.
  [ Chen Yaning, Li Zhi, Fan Yuting, et al. Research progress on the impact of climate change on water resources in the arid region of northwest China[J]. Acta Geographica Sinica, 2014, 69(9): 1295-1304. ]
[6] Ellison D, Morris C E, Locatelli B, et al. Trees, forests and water: Cool insights for a hot world[J]. Global Environmental Change, 2017, 43: 51-61.
[7] Kelley C P, Mohtadi S, Cane M A, et al. Climate change in the Fertile Crescent and implications of the recent Syrian drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 3241-3246.
[8] SIWI (Stockholm International Water Institute). Managing the forest water nexus: Opportunities for climate change mitigation and adaptation[R]. 2019. https://www.siwi.org/publications/managing-the-forest-water-nexus/.
[9] 王涛. 我国绿洲化及其研究的若干问题初探[J]. 中国沙漠, 2010, 30(5): 995-998.
  [ Wang Tao. Some issues on oasification study in China[J]. Journal of Desert Research, 2010, 30(5): 995-998. ]
[10] 王金叶, 于澎涛, 王彦辉. 森林生态水文过程研究: 以甘肃祁连山水源涵养林为例[M]. 北京: 科学出版社, 2008.
  [ Wang Jinye, Yu Pengtao, Wang Yanhui. Study on forest ecohydrological process: A case study of water conservation forest in Qilian Mountains, Gansu Province[M]. Beijing: Science Press, 2008. ]
[11] Ehbrecht M, Seidel D, Annigh?fer P, et al. Global patterns and climatic controls of forest structural complexity[J]. Nature Communications, 2021, 12: 519, doi: 10.1038/s41467-020-20767-z.
[12] Ali A, Sanaei A, Li M, et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests[J]. Science of the Total Environment, 2020, 706: 135719, doi: 10.1016/j.scitotenv.2019.135719.
[13] Gazol A, Camarero J J, Vicente-Serrano S M, et al. Forest resilience to drought varies across biomes[J]. Global Change Biology, 2018, 24: 2143-2158.
[14] Vose J M, Miniat C F, Luce C H, et al. Ecohydrological implications of drought for forests in the United States[J]. Agricultural and Forest Meteorology, 2016, 380: 335-345.
[15] Li B, Chen Y, Shi X, et al. Temperature and precipitation changes in different environments in the arid region of northwest China[J]. Theoretical and Applied Climatology, 2013, 112(3/4): 589-596.
[16] 姚俊强, 杨青, 刘志辉, 等. 中国西北干旱区降水时空分布特征[J]. 生态学报, 2015, 35(17): 5846-5855.
  [ Yao Junqiang, Yang Qing, Liu Zhihui, et al. Spatio-temporal change of precipitation in arid region of the northwest China[J]. Acta Ecologica Siniea, 2015, 35(17): 5846-5855. ]
[17] 汪有奎, 贾文雄, 刘潮海, 等. 祁连山北坡的生态环境变化[J]. 林业科学, 2012, 48(4): 21-26.
  [ Wang Youkui, Jia Wenxiong, Liu Chaohai, et al. Ecological environment change in the north slope of the Qilianshan Mountains[J]. Scientia Silvae Sinicae, 2012, 48(4): 21-26. ]
[18] 程鹏, 孔祥伟, 罗汉, 等. 近60 a以来祁连山中部气候变化及其径流响应研究[J]. 干旱区地理, 2020, 43(5): 1192-1201.
  [ Cheng Peng, Kong Xiangwei, Luo Han, et al. Climate change and its runoff response in the middle section of the Qilian Mountains in the past 60 years[J]. Arid Land Geography, 2020, 43(5): 1192-1201. ]
[19] 温煜华, 吕越敏, 李宗省. 近60 a祁连山极端降水变化研究[J]. 干旱区地理, 2021, 44(5): 1199-1212.
  [ Wen Yuhua, Lü Yuemin, Li Zongxing. Changes of extreme precipitation in Qilian Mountains in recent 60 years[J]. Arid Land Geography, 2021, 44(5): 1199-1212. ]
[20] Huang J, Yu H, Dai A, et al. Drylands face potential threat under 2 ℃ global warming targets[J]. Nature Climate Change, 2017, 7: 417-422.
[21] Nadeau C P, Urban M C, Bridle J R. Climates past, present, and yet-to-come shape climate change vulnerabilities[J]. Trends in Ecology & Evolution, 2017, 32: 786-800.
[22] Gaines W L, Hessburg P F, Aplet G H, et al. Climate change and forest management on federal lands in the Pacific Northwest, USA: Managing for dynamic landscapes[J]. Forest Ecology and Management, 2022, 504: 119794, doi: 10.1016/j.foreco.2021.119794.
[23] Teng M, Zeng L, Hu W, et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in northwest China[J]. Science of the Total Environment, 2020, 714: 136691, doi: 10.1016/j.scitotenv.2020.136691.
[24] He Z, Du J, Chen L, et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China[J]. Agricultural and Forest Meteorology, 2018, 260-261: 31-40.
[25] 贾文雄, 赵珍, 俎佳星, 等. 祁连山不同植被类型的物候变化及其对气候的响应[J]. 生态学报, 2016, 36(23): 7826-7840.
  [ Jia Wenxiong, Zhao Zhen, Zu Jiaxing, et al. Phenological variation in different vegetation types and their response to climate change in the Qilian Mountains, China, 1982—2014[J]. Acta Ecologica Sinica, 2016, 36(23): 7826-7840. ]
[26] Gao L, Gou X, Deng Y, et al. Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus[J]. Agricultural and Forest Meteorology, 2018, 260-261: 9-16.
[27] He Z, Zhao W, Zhang L, et al. Response of tree recruitment to climatic variability in the alpine treeline ecotone of the Qilian Mountains, northwestern China[J]. Forest Science, 2013, 59(1): 118-126.
[28] Hutchison C, Gravel D, Guichard F, et al. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment[J]. Scientific Reports, 2018, 8(1): 15443, doi: 10.1038/s41598-018-33670-x.
[29] McDowell N G, Allen C D, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world[J]. Science, 2020, 368: eaaz9463, doi: 10.1126/science.aaz9463.
[30] Wu X, Liu H, Li X, et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere[J]. Global Change Biology, 2018, 24: 504-516.
[31] Vachaud G, de Silans A P, Balabanis P, et al. Temporal stability of spatially measured soil water probability density function[J]. Soil Science Society America Journal, 1985, 49: 822-828.
[32] De Keersmaecker W, Lhermitte S, Tits L, et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover[J]. Global Ecology Biogeography, 2015, 24: 539-548.
[33] Pennekamp F, Pontarp M, Tabi A, et al. Biodiversity increases and decreases ecosystem stability[J]. Nature, 2018, 563: 109-112.
[34] Huang K, Xia J. High ecosystem stability of evergreen broadleaf forests under severe droughts[J]. Global Change Biology, 2019, 25: 3494-3503.
[35] Ouyang S, Xiang W, Gou M, et al. Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio-economic conditions[J]. Global Ecology and Biogeography, 2021, 30: 500-513.
[36] Li D, Wu S, Liu L, et al. Vulnerability of the global terrestrial ecosystems to climate change[J]. Global Change Biology, 2018, 24: 4095-4106.
[37] Eller C, Burgess S, Oliveira R. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae)[J]. Tree Physiology, 2015, 35: 387-399.
[38] Hegerl G C, Black E, Allan R P, et al. Challenges in quantifying changes in the global water cycle[J]. Bulletin of the American Meteorollgical Society, 2015, 96: 1097-1115.
[39] Zhang k, Kimball J S, Nemani R R, et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration[J]. Scientific Reports, 2015, 5: 15956, doi: 10.1038/srep15956.
[40] Kim Y, Band L E, Ficklin D L. Projected hydrological changes in the North Carolina piedmont using bias-corrected North American Regional Climate Change Assessment Program (NARCCAP) data[J]. Journal of Hydrology: Regional Studies, 2017, 12: 273-288.
[41] 马雪华. 森林水文学[M]. 北京: 中国林业出版社, 1993.
  [ Ma Xuehua. Forest hydrology[M]. Beijing: China Forestry Publishing House, 1993. ]
[42] Liu S. A new model for the prediction of rainfall interception in forest canopies[J]. Ecological Modelling, 1997, 99(2): 151-159.
[43] Gash J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorologycal Society, 1979, 105: 43-55.
[44] Eliades M, Bruggeman A, Djuma H, et al. Testing three rainfall interception models and different parameterization methods with data from an open Mediterranean pine forest[J]. Agricultural and Forest Meteorolgy, 2022, 313: 108755, doi: 10.1016/j.agrformet.2021.108755.
[45] Vereecken H, Pachepsky Y, Simmer C, et al. On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems[J]. Journal of Hydrology, 2016, 542: 63-86.
[46] Fatichi S, Katul G G, Ivanov V Y, et al. Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis[J]. Water Resources Research, 2015, 51: 3505-3524.
[47] Liu Q, Hao Y, Stebler E, et al. Impact of plant functional types on coherence between precipitation and soil moisture: A wavelet analysis[J]. Geophysical Research Letters, 2017, 44: 12197-12207.
[48] Gonzalez-Ollauri A, Stokes A, Mickovski S B. A novel framework to study the effect of tree architectural traits on stemflow yield and its consequences for soil-water dynamics[J]. Journal of Hydrology, 2020, 582: 124448, doi: 10.1016/j.jhydrol.2019.124448.
[49] Agee E, He L, Bisht G, et al. Root lateral interactions drive water uptake patterns under water limitation[J]. Advances Water Resources, 2021, 151: 103896, doi: 10.1016/j.advwatres.2021.103896.
[50] Zeng Z, Peng L, Piao S. Response of terrestrial evapotranspiration to Earth’s greening[J]. Current Opinion Environmental Sustainability, 2018, 33: 9-25.
[51] Palmquist K A, Schlaepfer D R, Bradford J B, et al. Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources[J]. Ecology, 2016, 97(9): 2342-2354.
[52] Nouri M, Homaee M, Bannayan M. Quantitative trend, sensitivity and contribution analyses of reference evapotranspiration in some arid environments under climate change[J]. Water Resources Management, 2017, 31: 2207-2224.
[53] da Costa A C L, Rowland L, Oliveira R S. Stand dynamics modulate water cycling and mortality risk in droughted tropical forest[J]. Global Change Biology, 2018, 24: 249-258.
[54] Ning T, Li Z, Feng Q, et al. Effects of forest cover change on catchment evapotranspiration variation in China[J]. Hydrological Processes, 2020, 34: 2219-2228.
[55] Wang L, Liu Z, Guo J, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture[J]. Forest Ecology and Management, 2021, 481: 118749, doi: 10.1016/j.foreco.2020.118749.
[56] Yang L, Feng Q, Adamowski J F, et al. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains[J]. Science of the Total Environment, 2021, 759: 143532, doi: 10.1016/j.scitotenv.2020.143532.
[57] Li Y, Chen Q, He K, et al. The accuracy improvement of sap flow prediction in Picea crassifolia Kom based on the back-propagation neural network model[J]. Hydrological Processes, 2022, 36(2): e14490, doi: 10.1002/hyp.14490.
[58] Li X, Vereecken H. Observation and measurement of ecohydrological processes[M]. Berlin: Springer, 2019: 417-433.
[59] Song X, Gao X, Dyck M, et al. Soil water and root distribution of apple tree (Malus pumila Mill) stands in relation to stand age and rainwater collection and infiltration system (RWCI) in a hilly region of the Loess Plateau, China[J]. Catena, 2018, 170: 324-334.
[60] Zhang T, Song L, Zhu J, et al. Spatial distribution of root systems of Pinus sylvestris var. mongolica trees with different ages in a semi-arid sandy region of northeast China[J]. Forest Ecology and Management, 2021, 483: 118776, doi: 10.1016/j.foreco.2020.118776.
[61] Manoli G, Bonetti S, Domec J, et al. Tree root systems competing for soil moisture in a 3D soil-plant model[J]. Advances Water Resources, 2014, 66: 32-42.
[62] Yang Y, Guan H, Hutson J L, et al. Examination and parameterization of the root water uptake model from stem water potential and sap flow measurements[J]. Hydrological Processes, 2013, 27: 2857-2863.
[63] Peters A. Modified conceptual model for compensated root water uptake: A simulation study[J]. Journal of Hydrology, 2016, 534: 1-10.
[64] Bouda M, Saiers J E. Dynamic effects of root system architecture improve root water uptake in 1-D process-based soil-root hydrodynamics[J]. Advances Water Resources, 2017, 110: 319-334.
[65] 丁永建. 中国寒旱区地表关键要素监测科学报告[M]. 北京: 气象出版社, 2015.
  [ Ding Yongjian. Scientific report on monitoring key factors of surface in cold and arid regions of China[M]. Beijing: China Meteorological Press, 2015. ]
[66] Gao B, Qin Y, Wang Y, et al. Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China[J]. Forests, 2016, 7(1): 10, doi: 10.3390/f7010010.
[67] Paschalis A, Katul, Fatichi S, et al. Matching ecohydrological processes and scales of banded vegetation patterns in semiarid catchments[J]. Water Resources Research, 2016, 52: 2259-2278.
[68] Tang G, Carroll R W H, Lutz A, et al. Regulation of precipitation-associated vegetation dynamics on catchment water balance in a semiarid and arid mountainous watershed[J]. Ecohydrology, 2016, 9: 1248-1262.
[69] Montaldo N, Oren R. Rhizosphere water content drives hydraulic redistribution: Implications of pore-scale heterogeneity to modeling diurnal transpiration in water-limited ecosystems[J]. Agricultural and Forest Meteorolgy, 2022, 312: 108720, doi: 10.1016/j.agrformet.2021.108720.
[70] Tague C L, Choate J S, Grant G. Parameterizing sub-surface drainage with geology to improve modeling streamflow responses to climate in data limited environments[J]. Hydrology and Earth System Sciences, 2013, 17: 341-354.
[71] Liu H, Zhao W, He Z, et al. Soil moisture dynamics across landscape types in an arid inland river basin of northwest China[J]. Hydrological Processes, 2015, 29: 3328-3341.
[72] He Z, Yang J, Du J, et al. Spatial variability of canopy interception in a spruce forest of the semiarid mountain regions of China[J]. Agricultural and Forest Meteorolgy, 2014, 188: 58-63.
[73] Chang X, Zhao W, He Z. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China[J]. Agricultural and Forest Meteorology, 2014, 187: 14-21.
[74] Chang X, Zhao W, Liu H, et al. Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China[J]. Agricultural and Forest Meteorology, 2014, 198-199: 209-220.
[75] Chang X, Zhao W, Liu B, et al. Can forest water yields be increased with increased precipitation in a Qinghai spruce forest in arid northwestern China?[J]. Agricultural and Forest Meteorology, 2017, 247: 139-150.
[76] Du J, He Z, Piatek K B, et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China[J]. Agricultural and Forest Meteorology, 2019, 269-270: 71-77.
[77] Tian Q, He Z, Xiao S, et al. Effects of artificial warming on stem radial changes in Qinghai spruce saplings in the Qilian Mountains of China[J]. Dendrochronologia, 2019, 55: 110-118.
[78] Xu H, Zhao C, Wang X. Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China[J]. Agricultural and Forest Meteorology, 2019, 276-277: 107628, doi: 10.1016/j.agrformet.2019.107628.
[79] Wang B, Yu P, Yu Y, et al. Effects of canopy position on climate-growth relationships of Qinghai spruce in the central Qilian Mountains, northwestern China[J]. Dendrochronologia, 2020, 64: 125756, doi: 10.1016/j.dendro.2020.125756.
[80] Du J, He Z, Chen L, et al. Impact of climate change on alpine plant community in Qilian Mountains of China[J]. International Journal of Biometeorology, 2021, 65: 1849-1858.
Outlines

/