Characteristics of “water-energy-carbon” coupling system in Xinjiang based on the ecological network analysis
Received date: 2023-05-05
Revised date: 2023-06-01
Online published: 2024-01-05
Water, energy, and carbon exert significant influence on the intricate interconnected systems of economy, society, and ecology. Alterations in any one of these factors can instigate a cascading effect, transferring ecological pressures and impacting the sustainable development of both regions and industries. Focusing on Xinjiang, China, and utilizing input and output data from 2007, 2012, and 2017, this paper employed the environmental input-output model to calculate implicit water consumption, implicit energy consumption, and implicit carbon emissions across 18 industrial sectors in Xinjiang. Additionally, an ecological network analysis model was employed to elucidate system circulation rates, robustness, and control dependencies. The findings revealed the following insights: (1) Mixed water was predominantly allocated to domestic outflow and household consumption, whereas mixed energy and mixed carbon were primarily utilized for domestic outflow and total capital formation. (2) The circulatory rates of water networks remained below 42%, while those of energy networks and carbon networks were below 25%, indicating an overall declining trend in the network system. (3) The system robustness of water networks, energy networks, and carbon networks signified a development stagnation, portraying an unsustainable overall developmental state. (4) A weak correlation was observed among the water system, energy system, and carbon system in various departments within the “water-energy-carbon” coupling system in Xinjiang. Control and dependence relationships are currently in an incidental state, lacking the formation of a synergistic “water-energy-carbon” relationship between industries. This study elucidated the governing principles of the “water-energy-carbon” coupling system in Xinjiang, providing valuable data to support the realization of a low-carbon and efficiently integrated resource management model.
Zhiqiang WANG , Wenhuan JIANG , Shiyue LU . Characteristics of “water-energy-carbon” coupling system in Xinjiang based on the ecological network analysis[J]. Arid Land Geography, 2023 , 46(12) : 2005 -2016 . DOI: 10.12118/j.issn.1000-6060.2023.201
[1] | 习近平. 高举中国特色社会主义伟大旗帜为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告[N]. 人民日报, 2022-10-17(001). |
[1] | [Xi Jinping. Hold high the great banner of socialism with Chinese characteristics and strive in unity to build a modern socialist country in all respects: Report at the 20th National Congress of the Communist Party of China[N]. People’s Daily, 2022-10-17(001).] |
[2] | Khan Z, Linares P, García-González J. Integrating water and energy models for policy driven applications: A review of contemporary work and recommendations for future developments[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1123-1138. |
[3] | 洪思扬, 王红瑞, 来文立, 等. 我国能源耗水空间特征及其协调发展脱钩分析[J]. 自然资源学报, 2017, 32(5): 800-813. |
[3] | [Hong Siyang, Wang Hongrui, Lai Wenli, et al. Spatial analysis and coordinated development decoupling analysis of energy-consumption water in China[J]. Journal of Natural Resources, 2017, 32(5): 800-813.] |
[4] | 赵荣钦, 李志萍, 韩宇平, 等. 区域“水-土-能-碳”耦合作用机制分析[J]. 地理学报, 2016, 71(9): 1613-1628. |
[4] | [Zhao Rongqin, Li Zhiping, Han Yuping, et al. The coupling interaction mechanism of regional water-land-energy-carbon system[J]. Acta Geographica Sinica, 2016, 71(9): 1613-1628.] |
[5] | 李思佳, 杨谨, 方丹, 等. 基于产业链视角的京津冀区域碳排放影响因素研究[J]. 生态学报, 2023, 43(9): 3473-3487. |
[5] | [Yang Sijia, Yang Jin, Fang Dan, et al. The infiuencing factors of carbon emissions in Beijing-Tianjin-Hebei urban agglomeration from the perspective of industrial chain[J]. Acta Ecologica Sinica, 2023, 43(9): 3473-3487.] |
[6] | 曾萌, 张园园, 王红瑞, 等. 中国水-能源纽带关系双向消耗核算研究[J]. 水资源保护, 2021, 32(10): 12-16. |
[6] | [Zeng Meng, Zhang Yuanyuan, Wang Hongrui, et al. Bidirectional consumption accounting of water-energy nexus in China[J]. Water Resources Protection, 2021, 32(10): 12-16.] |
[7] | 姜珊. 水-能源纽带关系解析与耦合模拟[D]. 北京: 中国水利水电科学研究院, 2017. |
[7] | [Jiang Shan. Scientific concept of water-energy nexus and coupling simulation[D]. Beijing: China Institute of Water Resources and Hydropower Science, 2017.] |
[8] | Wang J X, Rothausen S G S A, Conway D, et al. China’s water-energy nexus: Greenhouse-gas emissions from groundwater use for agriculture[J]. Environmental Research Letters, 2012, 7(1): 268-272. |
[9] | 陈燕玲, 王投婧, 占明锦, 等. 2000—2019年江西省能源消费碳排放变化及其影响因素[J]. 气象与减灾研究, 2022, 45(1): 38-45. |
[9] | [Chen Yanling, Wang Toujing, Zhan Mingjin, et al. Study on carbon emission intensity and its influence factor for the energy consumption in Jiangxi Province during 2000—2019[J]. Meteorology and Disaster Reduction Research, 2022, 45(1): 38-45.] |
[10] | 龙志, 孙颖琦, 郎丽霞, 等. 黄土高原典型县域碳排放特征与时空格局——以庆城县为例[J]. 干旱区研究, 2022, 39(5): 1631-1641. |
[10] | [Long Zhi, Sun Yingqi, Lang Lixia, et al. Spatiotemporal patterns and characteristics of carbon emissions in the Loess Plateau: A case study of Qingcheng County[J]. Arid Zone Research, 2022, 39(5): 1631-1641.] |
[11] | 吴茜, 陈强强. 甘肃省行业碳排放影响因素及脱钩努力研究[J]. 干旱区地理, 2023, 46(2): 274-283. |
[11] | [Wu Xi, Chen Qiangqiang. Influencing factors and decoupling efforts of industry-related carbon emissions in Gansu Province[J]. Arid Land Geography, 2023, 46(2): 274-283.] |
[12] | 刘岱淞. 上海市居民生活用能碳排放的因素分解研究[J]. 上海经济, 2021(2): 56-73. |
[12] | [Liu Daisong. Study on factor decomposition of carbon emissions from household energy use in Shanghai[J]. Shanghai Economy, 2021(2): 56-73.] |
[13] | 杨顺顺. 中国工业部门碳排放转移评价及预测研究[J]. 中国工业经济, 2015(6): 55-67. |
[13] | [Yang Shunshun. Evaluation and forecasting of carbon emissions transfer from the industrial sector in China[J]. China Industrial Economics, 2015(6): 55-67.] |
[14] | 刘宁, 孙鹏森, 刘世荣. 陆地水-碳耦合模拟研究进展[J]. 应用生态学报, 2012, 23(11): 3187-3196. |
[14] | [Liu Ning, Sun Pengsen, Liu Shirong. Research advances in simulating land water-carbon coupling[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 3187-3196.] |
[15] | 王川, 刘永昌, 李稚. 塔里木河下游生态输水对植被碳源/汇空间格局的影响[J]. 干旱区地理, 2021, 44(3): 729-738. |
[15] | [Wang Chuan, Liu Yongchang, Li Zhi. Effects of ecological water conveyance on the spatial pattern of vegetation carbon sources/sinks in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 729-738.] |
[16] | Venkatesh G, Chan A, Bratteb? H. Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors[J]. Energy, 2014, 75: 153-166. |
[17] | Zhang Y C, Shen Y J, Xu X L, et al. Characteristics of the water-energy-carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the North China Plain[J]. Agriculture Water Management, 2013, 128: 140-148. |
[18] | 余娇, 赵荣钦, 肖连刚, 等. 基于“水-能-碳”关联的城市污水处理系统碳排放研究[J]. 资源科学, 2020, 42(6): 1052-1062. |
[18] | [Yu Jiao, Zhao Rongqin, Xiao Liangang, et al. Carbon emissions of urban wastewater treatment system based on the “water-energy-carbon” nexus[J]. Resources Science, 2020, 42(6): 1052-1062.] |
[19] | 余锦如, 王远, 余凡, 等. 基于“水-能-碳”消费视角的福建省资源环境与经济增长脱钩关系[J]. 应用生态学报, 2021, 32(11): 3845-3855. |
[19] | [Yu Jinru, Wang Yuan, Yu Fan, et al. Decoupling between resources and environment and economic growth in Fujian Province, China from the perspective of “water-energy-carbon” consumption[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 3845-3855.] |
[20] | 杨雪莼. 基于不同视角的城市产业能源-水-碳耦合分析框架及应用研究[D]. 济南: 山东大学, 2019. |
[20] | [Yang Xuechun. Research on urban sectoral energy-water-carbon nexus analysis framework and application based on different perspective: Case studies for Beijing and Shanghai[D]. Ji’nan: Shandong University, 2019.] |
[21] | Venkatesh G, Chan A, Bratteb? H. Understanding the water-energy-carbon nexus in urban water utilities: Comparison off our city case studies and the relevant influencing factors[J]. Energy, 2014, 75: 153-66. |
[22] | Zhou Y C, Zhang B, Wang H K, et al. Drops of energy: Conserving urban water to reduce greenhouse gas emissions[J]. Environmental Science & Technology, 2013, 47: 10753-10761. |
[23] | 黄钰. 安徽省水-能耦合关系与作用机制研究[D]. 南京: 南京大学, 2019. |
[23] | Huang Yu. Water-energy nexus relationship and action mechanism in Anhui Province[D]. Nanjing: Nanjing University, 2019.] |
[24] | Feng K, Chapagain A, Suh S, et al. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations[J]. Economic Systems Research, 2016, 23(4): 371-385. |
[25] | 贺佑国, 李德波, 叶旭东. 我国中长期煤炭供应分析[J]. 能源政策研究, 2008(2): 2-6. |
[25] | [He Youguo, Li Debo, Ye Xudong. Analysis of coal providing for medium & long-term in China[J]. Energy Policy Research, 2008(2): 2-6.] |
[26] | 新疆统计局. 新疆统计年鉴[M]. 北京: 中国统计出版社, 2023: 37-42. |
[26] | [Xinjiang Bureau of Statistics. Xinjiang statistical yearbook[M]. Beijing: China Statistics Press, 2023: 37-42.] |
[27] | 张俊, 林卿, 王江泉. 省域经济系统能源与水关联及协同发展研究基于投入产出和生态网络分析的福建省实证[J]. 北京航空航天大学学报(社会科学版), 2020, 33(6): 80-92. |
[27] | [Zhang Jun, Lin Qing, Wang Jiangquan. Energy and water nexus and collaborative development in provincial economic system: Empirical study in Fujian based on input-output and ecological network analysis[J]. Journal of Beijing University of Aeronautics and Astronautics (Social Sciences Edition), 2020, 33(6): 80-92.] |
[28] | 项潇智, 贾绍凤. 中国能源产业的现状需水估算与趋势分析[J]. 自然资源学报, 2016, 31(1): 114-123. |
[28] | [Xiang Xiaozhi, Jia Shaofeng. Estimation and trend analysis of water demand of energy industry in China[J]. Journal of Natural Resources, 2016, 31(1): 114-123.] |
[29] | 彭焜, 朱鹤, 王赛鸽, 等. 基于系统投入产出和生态网络分析的能源-水耦合关系与协同管理研究——以湖北省为例[J]. 自然资源学报, 2018, 33(9): 1514-1528. |
[29] | [Peng Kun, Zhu He, Wang Saige, et al. Energy-water nexus in Hubei Province based on system input-output analysis and ecological network analysis[J]. Journal of Natural Resources, 2018, 33(9): 1514-1528.] |
[30] | 孙才志, 靳春玉, 阎晓东. 基于MRIO和ENA的中国省区能源-水资源耦合关系研究[J]. 华北水利水电大学学报(自然科学版), 2020, 41(3): 32-40. |
[30] | [Sun Caizhi, Jin Chunyu, Yan Xiaodong. Chinese provincial energy-water nexus relationship based on MRIO and ENA[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2020, 41(3): 32-40.] |
/
〈 |
|
〉 |