Earth Surface Process

Applicability study of the boundary layer displacement thickness to the evaluation of sand barrier windbreak benefits: A case of polylactic acid sand barrier

  • Shuai ZHANG ,
  • Weijie YUAN ,
  • Hui LIU ,
  • Haixia WANG ,
  • Haohui GUAN ,
  • Luzhen WANG
Expand
  • 1. Experimental Center of Forestry in North China, Chinese Academy of Forestry/National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Beijing 102300, China
    2. Water & Land Eco-Environment Technology Institute of Beijing Co. Ltd, Beijing 100080, China
    3. Qinghai Provincial Investigation, Design &Research Institute of Water Conservancy & Hydropower Co., Ltd, Xining 810000, Qinghai, China

Received date: 2023-04-28

  Revised date: 2023-07-11

  Online published: 2024-01-05

Abstract

Surface roughness, a conventional index widely applied in wind erosion protection, plays a crucial role in evaluating the effectiveness of engineering measures such as forest and sand barriers. Despite its prevalent use, practical applications reveal its limited accuracy. Consequently, we introduce a novel index termed “boundary layer displacement thickness”. Through wind tunnel simulations, we assessed the wind speed frequency distribution of various sandbag barriers. We computed the mean wind speed, wind prevention efficiency, and also scrutinized the wind speed flow field to validate the precision of both roughness and boundary layer displacement thickness measurements. The findings indicate that an increase in the length of the polylactic acid sandbag barrier corresponds to an upward trend in average wind speed. Specifically, the average wind speed within the 1.5-m and 2.0-m barriers is 1.13 and 1.24 times that of the 1.0-m barrier, respectively. Concurrently, wind prevention efficiency experiences a decline, with values exceeding 0.6 for the 1.0-m barrier, 0.5 for the 1.5-m barrier, and 0.4 for the 2.0-m barrier. Analysis of the wind velocity field data reveal that the high-speed zone expands as the barrier grid size increases, signifying a weakened protective effect with large sand barriers. Notably, the boundary layer displacement thickness demonstrates a consistent decreasing trend with increasing barrier size, aligning with the aforementioned pattern. However, surface roughness exhibits an anomalous pattern, initially decreasing and then increasing. In summary, the boundary layer displacement thickness proved to be more accurate and emerged as a promising supplementary reference indicator for evaluating the efficacy of wind erosion protection measures.

Cite this article

Shuai ZHANG , Weijie YUAN , Hui LIU , Haixia WANG , Haohui GUAN , Luzhen WANG . Applicability study of the boundary layer displacement thickness to the evaluation of sand barrier windbreak benefits: A case of polylactic acid sand barrier[J]. Arid Land Geography, 2023 , 46(12) : 1973 -1983 . DOI: 10.12118/j.issn.1000-6060.2023.197

References

[1] 丁国栋. 风沙物理学[M]. 北京: 中国林业出版社, 2010: 26-27.
[1] [Ding Guodong. Aeolian physics[M]. Beijing: China Forestry Publishing House, 2010: 119.]
[2] Touré A A, Tidjani A D, Rajot J L, et al. Dynamics of wind erosion and impact of vegetation cover and land use in the Sahel: A case study on sandy dunes in southeastern Niger[J]. Catena, 2019, 177: 272-285.
[3] Zhou C L, Yang F, Mamtimin A, et al. Wind erosion events at different wind speed levels in the Tarim Basin[J]. Geomorphology, 2020, 369: 107386, doi: 10.1016/j.geomorph.2020.107386.
[4] Xiao L G, Li G Q, Zhao R Q, et al. Effects of soil conservation measures on wind erosion control in China: A synthesis[J]. Science of the Total Environment, 2021, 778: 146308, doi: 10.1016/j.scitotenv.2021.146308.
[5] Emilio R C, Yolanda C, Sonia C, et al. Effects of biological soil crusts on surface roughness and implications for runoff and erosion[J]. Geomorphology, 2012, 145: 81-89.
[6] Liang J, Ning R X, Sun Z H, et al. Preparation and characterization of an eco-friendly dust suppression and sand-fixation liquid mulching film[J]. Carbohydrate Polymers, 2020, 256: 117429, doi: 10.1016/j.carbpol.2020.117429.
[7] 王逸敏, 刘康, 屈建军. 沙障对流沙地植被和土壤养分的影响[J]. 中国沙漠, 2019, 39(3): 56-65.
[7] [Wang Yimin, Liu Kang, Qu Jianjun. Effects of sand barriers on vegetation and soil nutrient in sand dunes[J]. Journal of Desert Research, 2019, 39(3): 56-65.]
[8] 闫敏, 左合君, 贾光普, 等. 不同防沙措施的风沙流及其携沙粒度垂直分异特征[J]. 干旱区地理, 2022, 45(5): 1513-1522.
[8] [Yan Min, Zuo Hejun, Jia Guangpu, et al. Vertical distribution characteristics of wind-sand flow and its grain size under different sand control measures[J]. Arid Land Geography, 2022, 45(5): 1513-1522.]
[9] 石麟, 李红悦, 赵雨兴, 等. 毛乌素沙地流动沙丘不同沙障组合措施的防风固沙效益评价[J]. 干旱区研究, 2023, 40(2): 268-279.
[9] [Shi Lin, Li Hongyue, Zhao Yuxing, et al. Benefit evaluation of wind prevention and sand fixation under the combined measures of sand barrier in mobile dunes in Mu Us Sandy Land[J]. Arid Zone Research, 2023, 40(2): 268-279.]
[10] Abulaiti A, Kimura R, Kodama Y. Effect of flexible and rigid roughness elements on aeolian sand transport[J]. Arid Land Research and Management, 2016, 31: 1-14.
[11] Zhang S, Ding G D, Yu M H, et al. Application of boundary layer displacement thickness in wind erosion protection evaluation: Case study of a Salix psammophila sand barrier[J]. International Journal of Environmental Research and Public Health, 2019, 16(4): 592, doi: 10.3390/ijerph16040592.
[12] Wu X G, Fan J Q, Sun L, et al. Wind erosion and its ecological effects on soil in the northern piedmont of the Yinshan Mountains[J]. Ecological Indicators, 2021, 128: 107825, doi: 10.1016/j.ecolind.2021.107825.
[13] Chamberlain A C. Roughness length of sea, sand and snow[J]. Boundary Layer Meteorology, 1983, 25: 405-409.
[14] 杨坪坪, 李瑞, 盘礼东, 等. 地表粗糙度及植被盖度对坡面流曼宁阻力系数的影响[J]. 农业工程学报, 2020, 36(6): 106-114.
[14] [Yang Pingping, Li Rui, Pan Lidong, et al. Effects of surface roughness and vegetation coverage on Manning’s resistance coefficient to overland flow[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 106-114.]
[15] Bagnold R A. The physics of blown sand and desert dunes[M]. London: Methuen and Co., 1941.
[16] Jarrah M, Mayel S, Tatarko J, et al. A review of wind erosion models: Data requirements, processes, and validity[J]. Catena, 2020, 187: 104388, doi: 10.1016/j.catena.2019.104388.
[17] 李鑫玉, 王静璞, 王周龙. 空气动力学粗糙度研究进展[J]. 干旱区地理, 2023, 46(3): 407-417.
[17] [Li Xinyu, Wang Jingpu, Wang Zhoulong. Research progress on aerodynamic roughness[J]. Arid Land Geography, 2023, 46(3): 407-417.]
[18] 王晓, 张伟民. 粗糙元的空气动力学效应研究进展[J]. 干旱区研究, 2014, 31(5): 922-927.
[18] [Wang Xiao, Zhang Weimin. Review on aerodynamic effects of roughness element[J]. Arid Zone Research, 2014, 31(5): 922-927.]
[19] Dong Z B, Liu X P, Wang X M. Aerodynamic roughness of gravel surfaces[J]. Geomorphology, 2002, 43(1): 17-31.
[20] Meng W, Tang G Q, Liu Y S, et al. The difference in the boundary layer height between urban and suburban areas in Beijing and its implications for air pollution[J]. Atmospheric Environment, 2021, 260: 118552, doi: 10.1016/j.atmosenv.2021.118552.
[21] Bruno L, Fransos D, Giudice A L. Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 173: 79-90.
[22] Abulaiti A, Kimura R, Kodama Y. Effect of flexible and rigid roughness elements on aeolian sand transport[J]. Arid Land Research, 2016, 31: 111-124.
[23] 原伟杰, 虞毅, 岳永德, 等. 沙丘部位对聚乳酸纤维沙袋沙障降解速度的影响[J]. 干旱区资源与环境, 2015, 29(4): 166-171.
[23] [Yuan Weijie, Yu Yi, Yue Yongde, et al. Effects of slope position on the degradation of PLA sand barriers[J]. Journal of Arid Land Resources and Environment, 2015, 29(4): 166-171.]
[24] 王艺钊, 原伟杰, 丁国栋, 等. 聚乳酸(PLA)沙障凹曲面及沉积物粒度特征研究[J]. 干旱区地理, 2020, 43(3): 671-678.
[24] [Wang Yizhao, Yuan Weijie, Ding Guodong, et al. Concave surface features and grain-size characteristics in polylactic acid sand barrier[J]. Arid Land Geography, 2020, 43(3): 671-678.]
[25] Kurita E, Seo T. Multivariate normality test based on kurtosis with two-step monotone missing data[J]. Journal of Multivariate Analysis, 2021, 188: 104824, doi: 10.1016/j.jmva.2021.104824.
[26] 孙伟, 徐芬. 基于偏度方法的地物杂波识别及去除[J]. 干旱气象, 2018, 36(3): 522-528.
[26] [Sun Wei, Xu Fen. Preliminary study on detection and removal of clutter based on skewness method[J]. Journal of Arid Meteorology, 2018, 36(3): 522-528.]
[27] Ye L, Gu X Z, Wang D B, et al. An unbiased estimator of coefficient of variation of streamflow[J]. Journal of Hydrology, 2021, 594: 125954, doi: 10.1016/j.jhydrol.2021.125954.
[28] 张帅, 丁国栋, 高广磊, 等. 硬质地HDPE沙障防风效益的风洞试验[J]. 北京林业大学学报, 2020, 42(3): 127-133.
[28] [Zhang Shuai, Ding Guodong, Gao Guanglei, et al. Wind tunnel test on windproof benefit of horniness HDPE sand barrier[J]. Journal of Beijing Forestry University, 2020, 42(3): 127-133.]
[29] Liu J Q, Kimura R, Miyawaki M, et al. Effects of plants with different shapes and coverage on the blown-sand flux and roughness length examined by wind tunnel experiments[J]. Catena, 2021, 197: 104976, doi: 10.1016/j.catena.2020.104976.
Outlines

/