Characteristics of grain size and geochemical elements composition of surface sediments of megaripple stripes in the Qaidam Basin
Received date: 2023-02-25
Revised date: 2023-04-21
Online published: 2023-12-05
Megaripple stripes (MRS) are an enigmatic eolian bedform pattern characterized by alternating megaripples corridor (MRC) and smaller bedform corridor (SBC), oriented crosswise to the prevailing wind direction. MRCs have taller bedforms, longer wavelengths, and coarser surface sediments compared with the intervening SBCs. MRSs are widely distributed across the middle and southern margins of the Qaidam Basin, Qinghai Province of China, but their comprehensive study remains limited. Analyzing MRS surface sediments can provide a reference for the subsequent study on its formation and evolution, along with the erosion and deposition processes of eolian sand. Herein, 112 surface sediment samples were collected from the middle and southern margins of the Qaidam Basin. The physical (grain size characteristics) and chemical properties (major and trace elements) of these sediment samples were analyzed. The results of this study are as follows: (1) MRCs primarily consist of gravel and very fine sand, with gravel and very fine sand contents ranging from 44.24% to 50.19% and 15.91% to 20.42%. The grain size frequency curve of MRCs shows a bimodal distribution. Conversely, SBCs are primarily composed of very coarse and fine sands, varying from 26.00% to 35.90% and 14.80% to 20.47%. The grain size frequency curve of SBCs shows a trimodal distribution. (2) MRS sorting parameters are poor and exhibit positive and negative skewness but primarily positive skewness. MRS kurtosis is relatively wide to very wide. (3) There are no considerable differences in the content of chemical elements between MRCs and SBCs. The major elements of MRS primarily consist of SiO2 and Al2O3, with the highest SiO2 content of ~63% and Al2O3 content hovering at ~10%. The trace elements, such as Cr, Co, Mo, and Ba, play a dominant role compared to the upper continental crust, Cr and Mo elements show an enriched state, while other elements show signs of leaching. (4) MRS sedimentary environment in the middle and southern margin of the Qaidam Basin is cold and dry. These areas have experienced low chemical weathering, with relatively stable chemical weathering. Compositionally, they closely resemble the upper continental crust and are in the early stage of continental weathering.
Key words: megaripple stripes; Qaidam Basin; sediments; grain size; chemical elements
Lijie WANG , Fengjun XIAO , Zhibao DONG , Huirong MA , Hao CHEN . Characteristics of grain size and geochemical elements composition of surface sediments of megaripple stripes in the Qaidam Basin[J]. Arid Land Geography, 2023 , 46(11) : 1826 -1835 . DOI: 10.12118/j.issn.1000-6060.2023.083
[1] | Tsoar H. Bagnold R A 1941: The physics of blown sand and desert dunes. London: Methuen[J]. Progress in Physical Geography, 1994, 18(1): 91-96. |
[2] | Yizhaq H, Katra I, Isenberg O, et al. Evolution of megaripples from a flat bed[J]. Aeolian Research, 2012, 6: 1-12. |
[3] | 李猛, 董治宝, 张正偲. 风成沙波纹数学模型综述[J]. 中国沙漠, 2013, 33(5): 1285-1292. |
[3] | [ Li Meng, Dong Zhibao, Zhang Zhengcai. Overview on mathematical models of aeolian sand ripples[J]. Journal of Desert Research, 2013, 33(5): 1285-1292. ] |
[4] | 梅凡民, 高自文, 蒋缠文. 风沙流中蠕移粒子群动量分布特征的风洞实验研究[J]. 西北大学学报(自然科学版), 2013, 43(3): 473-479. |
[4] | [ Mei Fanmin, Gao Ziwen, Jiang Chanwen. The stochastic distribution of rolling particles’ momentum during aeolian sand transports based on digital high-speed photography images taken in a blown sand wind tunnel[J]. Journal of Northwest University (Natural Science Edition), 2013, 43(3): 473-479. ] |
[5] | Han Q J, Qu J J, Zu R P, et al. Granule ripples in the Kumtagh Desert, China: Morphological and sedimentary characteristics, and development processes[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(5): e2021JF006448, doi: 10.1029/2021JF006448. |
[6] | Gough T R. Megaripple Stripes[D]. Calgary: University of Calgary, 2019. |
[7] | Simons F S, Ericksen G E. Some desert features of northwest central Peru[J]. Boletin de la Sociedad Geológica del Perú, 1953, 26: 229-246. |
[8] | Newell N D, Boyd D W. Extraordinarily coarse eolian sand of the Ica Desert, Peru[J]. Journal of Sedimentary Research, 1955, 25: 226-228. |
[9] | Haney E M, Grolier M J. Geologic map of major Quaternary eolian features, northern and central coastal Peru[R]. Virginia: United States Geological Survey, 1991. |
[10] | Durán O, Claudin P, Andreotti B. On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws[J]. Aeolian Research, 2011, 3(3): 243-270. |
[11] | Silvestro S, Vaz D, Di Achille G, et al. Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ExoMars landing ellipse in Meridiani Planum, Mars[J]. Journal of Geophysical Research: Planets, 2015, 120(4): 760-774. |
[12] | 罗万银, 董治宝, 钱广强, 等. 戈壁表层沉积物地球化学元素组成及其沉积意义[J]. 中国沙漠, 2014, 34(6): 1441-1453. |
[12] | [ Luo Wanyin, Dong Zhibao, Qian Guangqiang, et al. Geochemical compositions of surface sediment from gobi desert in northern China and its sedimentary significance[J]. Journal of Desert Research, 2014, 34(6): 1441-1453. ] |
[13] | 潘凯佳, 张正偲, 董治宝, 等. 河西走廊新月形沙丘表层沉积物的理化性质[J]. 中国沙漠, 2019, 39(1): 44-51. |
[13] | [ Pan Kaijia, Zhang Zhengcai, Dong Zhibao, et al. Physicochemical characteristics of surface sediments of crescent-shaped sand dunes in the Hexi Corridor, Gansu, China[J]. Journal of Desert Research, 2019, 39(1): 44-51. ] |
[14] | Liang A M, Dong Z B, Su Z Z, et al. Provenance and transport process for interdune sands in the Kumtagh Sand Sea, northwest China[J]. Geomorphology, 2020, 367: 107310, doi: 10.1016/j.geomorph.2020.107310. |
[15] | Zhang Z C, Pan K J, Zhang C X, et al. Geochemical characteristics and the provenance of aeolian material in the Hexi Corridor Desert, China[J]. Catena, 2020, 190: 104483, doi: 10.1016/j.catena.2020.104483. |
[16] | 陈国祥. 毛乌素沙地风成沉积物沉积学特征[D]. 西安: 陕西师范大学, 2019. |
[16] | [ Chen Guoxiang. Sedimentological characteristics of aeolian sediments in Mu Us Sandy Land[D]. Xi’an: Shaanxi Normal University, 2019. ] |
[17] | 张焱, 马鹏飞, 曾林, 等. 基于沉积物理化性质的雅鲁藏布江中游粉尘物源研究[J]. 中国沙漠, 2021, 41(3): 92-100. |
[17] | [ Zhang Yan, Ma Pengfei, Zeng Lin, et al. Study on silt and clay provenance in the Yarlung Zangbo River middle reaches using sediment physicochemical characteristics[J]. Journal of Desert Research, 2021, 41(3): 92-100. ] |
[18] | 邵菁清, 杨守业. 化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候?[J]. 科学通报, 2012, 57(11): 933-942. |
[18] | [ Shao Jingqing, Yang Shouye. Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River Basin?[J]. Chinese Science Bulletin, 2012, 57(11): 933-942. ] |
[19] | Ando S, Rittner M, Vermeesch P, et al. The provenance of Taklamakan Desert sand[J]. Earth and Planetary Science Letters, 2016, 437: 127-137. |
[20] | Hu F G, Yang X P. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China[J]. Quaternary Science Reviews, 2016, 131: 179-192. |
[21] | 徐志伟, 鹿化煜, 赵存法, 等. 库姆塔格沙漠地表物质组成、来源和风化过程[J]. 地理学报, 2010, 65(1): 53-64. |
[21] | [ Xu Zhiwei, Lu Huayu, Zhao Cunfa, et al. Composition, origin and weathering process of surface sediment in Kumtagh Desert, northwest China[J]. Acta Geographica Sinica, 2010, 65(1): 53-64. ] |
[22] | 董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011. |
[22] | [ Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian geomorphology of the Kumtagh Desert[M]. Beijing: Science Press, 2011. ] |
[23] | 李恩菊. 巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D]. 西安: 陕西师范大学, 2011. |
[23] | [ Li Enjü. Comparative study on sediment characteristics of Badain Jaran Desert and Tengger Desert[D]. Xi’ an: Shaanxi Normal University, 2011. ] |
[24] | 伍光和, 胡双熙, 张志良, 等. 柴达木盆地[M]. 兰州: 兰州大学出版社, 1990. |
[24] | [ Wu Guanghe, Hu Shuangxi, Zhang Zhiliang, et al. Qaidam Basin[M]. Lanzhou: Lanzhou University Press, 1990. ] |
[25] | 梁爱民, 董治宝, 张正偲, 等. 沙漠倒置河床研究进展及其对火星类似物研究的启示[J]. 中国沙漠, 2022, 42(5): 14-24. |
[25] | [ Liang Aimin, Dong Zhibao, Zhang Zhengcai, et al. Study on the desert inverted channels and its implication for the study of the analogue on Mars[J]. Journal of Desert Research, 2022, 42(5): 14-24. ] |
[26] | 格尔木市地方志编纂委员会. 格尔木年鉴(2020)[M]. 西安: 陕西科学技术出版社, 2020. |
[26] | [ Golmud Local Chronicles Compilation Committee. Golmud Almanac (2020)[M]. Xi’ an: Shaanxi Science and Technology Press, 2020. ] |
[27] | 陈宗颜, 董治宝, 汪青春, 等. 柴达木盆地风况及输沙势特征[J]. 中国沙漠, 2020, 40(1): 195-203. |
[27] | [ Chen Zongyan, Dong Zhibao, Wang Qingchun, et al. Characteristics of wind regime and sand drift potential in Qaidam Basin of China[J]. Journal of Desert Research, 2020, 40(1): 195-203. ] |
[28] | Folk R L, Ward W C. Brazos river bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. |
[29] | Udden J A. Mechanical composition of clastic sediments[J]. Bulletin of the Geological Society of America, 1914, 25(1): 655-744. |
[30] | Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392. |
[31] | Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3): 1074-1106. |
[32] | 陈渭南. 塔克拉玛干沙漠84°E沿线沙物质的粒度特征[J]. 地理学报, 1993, 48(1): 33-46. |
[32] | [ Chen Weinan. Grain size parameters of aeolian sediments in the vicinity of the longitude 84°E, Taklamakan Desert[J]. Acta Geographica Sinica, 1993, 48(1): 33-46. ] |
[33] | 王晓枝, 董治宝, 南维鸽, 等. 拉萨河谷爬坡沙丘沉积物特征[J]. 中国沙漠, 2022, 42(4): 22-31. |
[33] | [ Wang Xiaozhi, Dong Zhibao, Nan Weige, et al. Sediment characteristics of climbing dunes in Lhasa River Valley, China[J]. Journal of Desert Research, 2022, 42(4): 22-31. ] |
[34] | Qian G Q, Dong Z B, Zhang Z C, et al. Granule ripples in the Kumtagh Desert, China: Morphology, grain size and influencing factors[J]. Sedimentology, 2012, 59(6): 1888-1901. |
[35] | Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. Palo: Blackwell Scientific Publications, 1985. |
[36] | 李绪龙, 张霞, 林春明, 等. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 2022, 28(1): 51-63. |
[36] | [ Li Xulong, Zhang Xia, Lin Chunming, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1): 51-63. ] |
[37] | 陈骏, 安芷生, 刘连文, 等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学: 地球科学, 2001(2): 136-145. |
[37] | [ Chen Jun, An Zhisheng, Liu Lianwen, et al. Changes in chemical composition of aeolian dust in the Loess Plateau and chemical weathering in inland Asia since the last 2.5 Ma[J]. Scientia Sinica (Terrae), 2001(2): 136-145. ] |
[38] | Tholen K, Pahtz T, Yizhaq H, et al. Megaripple mechanics: Bimodal transport ingrained in bimodal sands[J]. Nature Communications, 2022, 13(1): 162, doi: 10.1038/s41467-021-26985-3. |
[39] | Gough T, Hugenholtz C, Barchyn T. Eolian megaripple stripes[J]. Geology, 2020, 48(11): 1067-1071. |
[40] | Yizhaq H, Isenberg O, Wenkart R, et al. Morphology and dynamics of aeolian mega-ripples in Nahal Kasuy, southern Israel[J]. Israel Journal of Earth Sciences, 2009, 57(3): 149-165. |
[41] | Isenberg O, Yizhaq H, Tsoar H, et al. Megaripple flattening due to strong winds[J]. Geomorphology, 2011, 131(3-4): 69-84. |
[42] | 韩广, 龙鲜, 丁占良, 等. 科尔沁沙地大型沙波纹的初步研究[J]. 干旱区地理, 2023, 46(1): 56-64. |
[42] | [ Han Guang, Long Xian, Ding Zhanliang, et al. Preliminary study on the large-scale ripples in the Korqin Sandy Land[J]. Arid Land Geography, 2023, 46(1): 56-64. ] |
[43] | Yizhaq H, Katra I, Kok J F, et al. Transverse instability of megaripples[J]. Geology, 2012, 40(5): 459-462. |
/
〈 |
|
〉 |