Ecology and Environment

Spatial differentiation and risk of land use carbon emissions in county region of Ningxia

  • Keli JIA ,
  • Xiaoyu LI ,
  • Huimin WEI ,
  • Ruiliang LIU ,
  • Haoyu LI ,
  • Siyu YANG
Expand
  • College of Geographical Sciences and Planning, Ningxia University, Yinchuan 750021, Ningxia, China

Received date: 2022-12-21

  Revised date: 2023-02-07

  Online published: 2023-12-05

Abstract

Land use changes considerably influence carbon emissions and carbon storage, rendering an investigation into the spatial and temporal patterns of carbon emissions from land use transformations is essential. Such a study holds great importance to the rational allocation of land resources, the improvement of land use efficiency, and the realization of energy saving and emission reduction. Herein, based on land use and energy data from 1990—2020 in 22 county units in Ningxia Province, China, we comprehensively applied the carbon emission risk index and carbon footprint pressure index to analyze land use changes, spatial differentiation of carbon emissions, and carbon emission risk associated with land use of counties in Ningxia. The results are as follows: (1) Land use change in Ningxia has been substantially strong from 1990 to 2020. Notably, the dynamic degree of construction land was the largest, with an increase of 1578.48 km2. (2) During this period, the net carbon emissions of land use in Ningxia increased by 4969.25×104 t. Notably, net carbon emissions exhibited an average annual growth rate of 15.71% from 2000 to 2020, nearly doubling every decade. Meanwhile, the carbon emissions of construction land account for >86% of the total carbon emissions. The amount of carbon absorptions in Ningxia increased by 23.76×104 t, mainly forest carbon absorptions, accounting for >75% of the total carbon absorptions, showing a pattern of local agglomeration and overall dispersion. (3) The land use carbon emissions of each county showed an increasing trend but with a profound difference. Northern counties experienced the most pronounced growth rate of carbon emissions, and the spatial distribution pattern of carbon emissions of the counties along the Yellow River was higher than that in the central and southern counties. (4) Each country suffers from high risk and pressure of land use carbon emissions, where carbon emissions and carbon absorption are highly uncoordinated, leading to an imbalance in the ecosystem carbon balance.

Cite this article

Keli JIA , Xiaoyu LI , Huimin WEI , Ruiliang LIU , Haoyu LI , Siyu YANG . Spatial differentiation and risk of land use carbon emissions in county region of Ningxia[J]. Arid Land Geography, 2023 , 46(11) : 1757 -1767 . DOI: 10.12118/j.issn.1000-6060.2022.671

References

[1] Yang H, Huang J L, Liu D F. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage[J]. Applied Geography, 2020, 115: 102-135.
[2] 张苗, 吴萌. 土地利用对碳排放影响的作用机制和传导路径分析——基于结构方程模型的实证检验[J]. 中国土地科学, 2022, 36(3): 96-103.
[2] [ Zhang Miao, Wu Meng. Analysis on the mechanism and transmission path of the impact of land use on carbon emissions: Empirical test based on structural equation model[J]. China Land Science, 2022, 36(3): 96-103. ]
[3] Han J, Zhou X, Xiang W N. Progress in research on land use effects on carbon emissions and low carbon management[J]. Acta Ecologica Sinica, 2016, 36(4): 1152-1161.
[4] 李小康, 王晓鸣, 华虹. 土地利用结构变化对碳排放的影响关系及机理研究[J]. 生态经济, 2018, 34(1): 14-19.
[4] [ Li Xiaokang, Wang Xiaoming, Hua Hong. Research on influences of land use structure change on carbon emissions[J]. Ecological Economy, 2018, 34(1): 14-19. ]
[5] 曲福田, 卢娜, 冯淑怡. 土地利用变化对碳排放的影响[J]. 中国人口·资源与环境, 2011, 21(10): 76-83.
[5] [ Qu Futian, Lu Na, Feng Shuyi. Effects of land use change on carbon emissions[J]. China Population, Resources and Environment, 2011, 21(10): 76-83. ]
[6] 张杰, 陈海, 刘迪, 等. 基于县域尺度土地利用碳排放的时空分异及影响因素研究[J]. 西北大学学报(自然科学版), 2022, 52(1): 21-31.
[6] [ Zhang Jie, Chen Hai, Liu Di. The spatial and temporal variation and influencing factors of land use carbon emissions at county scale[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(1): 21-31. ]
[7] 李彦旻, 沈育生, 王世航. 基于土地利用变化的安徽省陆地碳排放时空特征及效应[J]. 水土保持学报, 2022, 36(1): 182-188.
[7] [ Li Yanmin, Shen Yusheng, Wang Shihang. Spatio-temporal characteristics and effects of terrestrial carbon emissions based on land use change in Anhui Province[J]. Journal of Soil and Water Conservation, 2022, 36(1): 182-188. ]
[8] Peng S S, Ciais P, Maignan F, et al. Sensitivity of land use change emission estimates to historical land use and land cover mapping[J]. Global Biogeochem Cycles, 2017, 31(4): 626-643.
[9] 姬盼盼, 高敏华. 基于LUCC1999—2014年新疆碳氧平衡估算[J]. 干旱区地理, 2018, 41(3): 608-615.
[9] [ Ji Panpan, Gao Minhua. Estimation of carbon and oxygen balance in Xinjiang based on LUCC 1999—2014[J]. Arid Land Geography, 2018, 41(3): 608-615. ]
[10] Houghton R A, Hobbie J E, Melillo J M, et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere[J]. Ecological Monography, 1983, 53(3): 235-262.
[11] Sampson R N, Apps M, Brown S, et al. Workshop summary statement: Terrestrial biosphere carbon fluxes quantification of sinks and sources of CO2[J]. Water Air & Soil Pollution, 1993, 70(1-4): 3-15.
[12] Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J]. Nature, 2000, 403: 301-304.
[13] Houghton R A. Temporal patterns of land use change and carbon storage in China and tropical Asia[J]. Science in China Series C Life Sciences, 2002, 45: 10-17.
[14] 吴茜, 陈强强. 甘肃省行业碳排放影响因素及脱钩努力研究[J]. 干旱区地理, 2023, 46(2): 274-283.
[14] [ Wu Xi, Chen Qiangqiang. A study on influencing factors and decoupling efforts of industry-related carbon emissions in Gansu Province[J]. Arid Land Geography, 2023, 46(2): 274-283. ]
[15] 邓吉祥, 刘晓, 王铮. 中国碳排放的区域差异及演变特征分析与因素分解[J]. 自然资源学报, 2014, 29(2): 189-200.
[15] [ Deng Jixiang, Liu Xiao, Wang Zheng. Characteristics analysis and factor decomposition based on the regional difference changes in China’s CO2 emission[J]. Journal of Natural Resources, 2014, 29(2): 189-200. ]
[16] 汪菲, 王长建. 新疆能源消费碳排放的多变量驱动因素分析——基于扩展的STIRPAT模型[J]. 干旱区地理, 2017, 40(2): 441-452.
[16] [ Wang Fei, Wang Changjian. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang[J]. Arid Land Geography, 2017, 40(2): 441-452. ]
[17] 孙建卫, 赵荣钦, 黄贤金, 等. 1995—2005年中国碳排放核算及其因素分解研究[J]. 自然资源学报, 2010, 25(8): 1284-1295.
[17] [ Sun Jianwei, Zhao Rongqin, Huang Xianjin, et al. Research on carbon emission estimation and factor decomposition of China from 1995 to 2000[J]. Journal of Natural Resources, 2010, 25(8): 1284-1295. ]
[18] 侯琴. 宁夏限制开发生态区土地利用结构时空演化及机理研究[D]. 银川: 宁夏大学, 2018.
[18] [ Hou Qin. Study on spatio-temporal evolution and mechanism of land use structure in restricted development ecological area of Ningxia[D]. Yinchuan: Ningxia University, 2018. ]
[19] 宁夏回族自治区统计局. 宁夏统计年鉴2021[M]. 北京: 中国统计出版社, 2021.
[19] [ Statistics Bureau of Ningxia Hui Autonomous Region. Ningxia statistical yearbook 2021[M]. Beijing: China Statistical Publishing House, 2021. ]
[20] 郑永超, 文琦. 宁夏自治区土地利用变化及碳排放效应[J]. 水土保持研究, 2020, 27(1): 207-212.
[20] [ Zheng Yongchao, Wen Qi. Change of land use and the carbon emission effect of Ningxia Autonomous Region[J]. Research of Soil and Water Conservation, 2020, 27(1): 207-212. ]
[21] 袁壮壮, 叶长盛, 李辉丹. 基于土地利用变化的南昌市碳排放效应分析[J]. 湖南师范大学自然科学学报, 2021, 44(5): 30-39.
[21] [ Yuan Zhuangzhuang, Ye Changsheng, Li Huidan. Analysis of carbon emission effect of Nanchang based on land use change[J]. Journal of Natural Science of Hunan Normal University (Natural Science Edition), 2021, 44(5): 30-39. ]
[22] 冯杰, 张胜, 王涛. 中国省际土地利用碳排放及其影响因素分析[J]. 统计与决策, 2019, 35(5): 141-145.
[22] [ Feng Jie, Zhang Sheng, Wang Tao. Analysis of provincial land use carbon emissions and its influencing factors in China[J]. Statistics and Decision, 2019, 35(5): 141-145. ]
[23] 马远, 刘真真. 黄河流域土地利用碳排放的时空演变及影响因素研究[J]. 生态经济, 2021, 37(4): 35-43.
[23] [ Ma Yuan, Liu Zhenzhen. Study on the spatial-temporal evolution and influencing factors of land use carbon emissions in the Yellow River Basin[J]. Ecological Economy, 2021, 37(4): 35-43. ]
[24] 孙赫, 梁红梅, 常学礼, 等. 中国土地利用碳排放及其空间关联[J]. 经济地理, 2015, 35(3): 154-162.
[24] [ Sun He, Liang Hongmei, Chang Xueli, et al. Land use patterns on carbon emission and spatial association in China[J]. Economic Geography, 2015, 35(3): 154-162. ]
[25] 严慈, 侯兰功. 基于灰色理论的陕西省土地利用变化及其碳排放研究[J]. 西安理工大学学报, 2021, 31(1): 25-31.
[25] [ Yan Ci, Hou Langong. Study on land use change and carbon emission in Shaanxi Province based on grey theory[J]. Journal of Xi’an University of Technology, 2021, 31(1): 25-31. ]
[26] 赵荣钦, 黄贤金. 基于能源消费的江苏省土地利用碳排放与碳足迹[J]. 地理研究, 2010, 29(9):1639-1649.
[26] [ Zhao Rongqin, Huang Xianjin. Carbon emission and carbon footprint of different land use types based on energy consumption of Jiangsu Province[J]. Geographical Research, 2010, 29(9): 1639-1649. ]
[27] 宁夏回族自治区生态环境厅. 2020年宁夏生态环境状况公报[EB/OL]. [2021-05-31]. https://sthjt.nx.gov.cn/hjzl/hjzkgb/202105/t20210531_3633768.html.
[27] Ecological Environment Department of Ningxia Hui Autonomous Region. Ningxia ecological environment status bulletin 2020[EB/OL]. [2021-05-31]. https://sthjt.nx.gov.cn/hjzl/hjzkgb/202105/t20210531_3633768.html.
Outlines

/