Climatology and Hydrology

Glacier monitoring in Qomolangma Nature Reserve based on multi-source remote sensing data

  • Qin JI ,
  • Cuilan ZHANG ,
  • Yuekai DING ,
  • Xiangqin CAO ,
  • Wenli LIANG
Expand
  • Chongqing Key Laboratory of GIS Application, Chongqing Normal University, Chongqing 401331, China

Received date: 2022-11-26

  Revised date: 2022-12-26

  Online published: 2023-11-10

Abstract

Glacier mass balance is a crucial indicator of climate change and is of great significance for assessing the regional ecological environment, thereby preventing and controlling glacier disasters. Based on Landsat series images, the ratio threshold method and visual interpretation method are applied to extract the glacier boundaries of Qomolangma Nature Reserve from 1990 to 2020. Moreover, the distribution and change characteristics of the glacier area in the past 30 years are investigated while the regional glacier deformation characteristics are monitored based on SBAS-InSAR technology to invert the changes in the glacier mass balance. The following results were observed. (1) From 1990 to 2020, the glacier area in the Qomolangma Nature Reserve continuously retreated, with this trend becoming much more prevalent in the last 10 years. Moreover, the total glacier area shrank by 247.16 km2 with a change rate of -18.92%. (2) The glaciers in the Qomolangma Nature Reserve were mostly situated at an altitude of 5400-6200 m and a slope of 10°-15°, and the highest ice loss occurred at an altitude of 5400-5600 m and a slope of 10°-15°. (3) In 2020, the average glacier deformation rate was between -129.069 mm·a-1 and 140.252 mm·a-1. The subsidence and surface deformation of glaciers are most severe at altitudes of 4200-4400 m and a slope of 40°-45°. (4) Rising temperatures and decreasing precipitation are believed to be the main causes of most glacier material losses in the Qomolangma Nature Reserve. Meanwhile, spatial climate and topographic differences may affect mass balance changes.

Cite this article

Qin JI , Cuilan ZHANG , Yuekai DING , Xiangqin CAO , Wenli LIANG . Glacier monitoring in Qomolangma Nature Reserve based on multi-source remote sensing data[J]. Arid Land Geography, 2023 , 46(10) : 1591 -1601 . DOI: 10.12118/j.issn.1000-6060.2022.624

References

[1] 秦大河, 丁永建. 冰冻圈变化及其影响研究——现状、趋势及关键问题[J]. 气候变化研究进展, 2009, 5(4): 187-195.
[1] [Qin Dahe, Ding Yongjian. Cryospheric changes and their impacts: Present, trends and key issues[J]. Climate Change Research, 2009, 5(4): 187-195. ]
[2] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
[2] [Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16. ]
[3] 李治国, 姚檀栋, 田立德. 国内外冰川变化对水资源影响研究进展[J]. 自然资源学报, 2008, 23(1): 1-8.
[3] [Li Zhiguo, Yao Tandong, Tian Lide. Progress in the research on the impact of glacial change on water resources[J]. Journal of Natural Resources, 2008, 23(1): 1-8. ]
[4] Tielidze L G, Nosenko G A, Khromova T E, et al. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020[J]. The Cryosphere, 2022, 16(2): 489-504.
[5] Huang L, Li Z, Zhou J M, et al. An automatic method for clean glacier and nonseasonal snow area change estimation in High Mountain Asia from 1990 to 2018[J]. Remote Sensing of Environment, 2021, 258: 112376, doi: 10.1016/j.rse.2021.112376.
[6] 李宏亮, 王璞玉, 李忠勤, 等. 基于多源数据的天山乌鲁木齐河源1号冰川变化研究[J]. 冰川冻土, 2021, 43(4): 1018-1026.
[6] [Li Hongliang, Wang Puyu, Li Zhongqin, et al. Research on the changes of the Urumqi Glacier No.1, Tianshan Mountains based on multi-source remote sensing data[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1018-1026. ]
[7] 车彦军, 张明军, 李忠勤, 等. 2008—2014年青冰滩72号冰川物质平衡特征分析[J]. 冰川冻土, 2020, 42(2): 318-331.
[7] [Che Yanjun, Zhang Mingjun, Li Zhongqin, et al. Understanding the mass balance characteristics of Qingbingtan Glacier No. 72 during the period of 2008—2014[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 318-331. ]
[8] Xu Y Z, Li T, Tang X M, et al. Research on the applicability of DInSAR, Stacking-InSAR and SBAS-InSAR for mining region subsidence detection in the Datong coalfield[J]. Remote Sensing, 2022, 14(14): 3314, doi:10.3390/RS14143314.
[9] Umarhadi D A, Avtar R, Widyatmanti W, et al. Use of multifrequency (C-band and L-band) SAR data to monitor peat subsidence based on time-series SBAS InSAR technique[J]. Land Degradation & Development, 2021, 32(16): 4779-4794.
[10] Liu B, Lu Z F, Chen L F, et al. Accuracy analysis of the InSAR altimeter in relative elevation measurements of the sea surface[J]. IEEE Access, 2021, 9: 27783-27789.
[11] 次旦伦珠. 珠穆朗玛峰自然保护区概况[J]. 中国藏学, 1997, 21(1): 3-22.
[11] [ Cidanlunzhu. Overview of Qomolangma Natioanal Nature Preserve[J]. China Tibetology, 1997, 21(1): 3-22. ]
[12] 黄淞波, 常占强, 谢酬, 等. 表碛型冰川的时序InSAR识别方法与形变监测研究[J]. 测绘科学, 2022, 47(1): 102-111, 120.
[12] [Huang Songbo, Chang Zhanqiang, Xie Chou, et al. Deformation monitoring and recognition of debris-covered glacier by MT-InSAR[J]. Mapping Science, 2022, 47(1): 102-111, 120. ]
[13] 师芸, 李杰, 吕杰, 等. 结合SBAS-InSAR与支持向量回归的开采沉陷监测与预测[J]. 遥感信息, 2021, 36(2): 6-12.
[13] [Shi Yun, Li Jie, Lü Jie, et al. Monitoring and prediction of mining subsidence based on SBAS-InSAR and improved support vector regression[J]. Remote Sensing Information, 2021, 36(2): 6-12. ]
[14] Ji Q, Yang T B, Li M Q, et al. Variations in glacier coverage in the Himalayas based on optical satellite data over the past 25 years[J]. Catena, 2022, 214: 106240, doi: 10.1016/j.catena.2022.106240.
[15] 龙四春, 李陶. D-InSAR中参考DEM误差与轨道误差对相位贡献的灵敏度研究[J]. 遥感信息, 2009(2): 3-6.
[15] [Long Sichun, Li Tao. Phase sensitivity study on D-InSAR for reference DEM and orbit error[J]. Remote Sensing Information, 2009(2): 3-6. ]
[16] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[17] 梁芳, 杨维芳, 李蓉蓉. 基于SBAS-InSAR技术的矿区地表形变监测研究[J]. 地理空间信息, 2022, 20(11): 44-48.
[17] [Liang Fang, Yang Weifang, Li Rongrong. Research on surface deformation monitoring in mining areas based on SBAS-InSAR technology[J]. Geospatial Information, 2022, 20(11): 44-48. ]
[18] 丁帮宁, 黄海兰, 邹进贵. 基于SBAS-InSAR技术的武汉市地表形变监测研究[J]. 测绘通报, 2022(增刊2):81-84, 146.
[18] [Ding Bangning, Huang Hailan, Zou Jingui. Ground surface deformation monitoring studies based on SBAS-InSAR technology in Wuhan City[J]. Bulletin of Surveying and Mapping, 2022(Suppl. 2): 81-84, 146. ]
[19] 汤远航, 李梦琦, 邓铃, 等. 1990—2020年朋曲流域冰川变化及其对气候变化的响应[J]. 干旱区地理, 2022, 45(1): 27-36.
[19] [Tang Yuanhang, Li Mengqi, Deng Ling, et al. Glacier change and its response to climate change in Pumqu Basin in 1990—2020[J]. Arid Land Geography, 2022, 45(1): 27-36. ]
[20] 冀琴, 刘睿, 杨太保. 1990—2015年喜马拉雅山冰川变化的遥感监测[J]. 地理研究, 2020, 39(10): 2403-2414.
[20] [Ji Qin, Liu Rui, Yang Taibao. Glacier variations in the Himalayas during 1990—2015[J]. Geographical Research, 2020, 39(10): 2403-2414. ]
[21] 侯明. 太行山两个最大降水高度带问题探讨[J]. 地理学与国土研究, 1992(4): 23-26.
[21] [Hou Ming. Discussion on the two maximum precipitation altitude zones in the Taihang Mountains[J]. Geography and Geo-information Science, 1992(4): 23-26. ]
[22] 谢自楚, 苏珍. 珠穆朗玛峰地区冰川的发育条件, 数量及分布[R]. 北京: 中国科学院西藏科学考察队, 1975.
[22] [Xie Zichu, Su Zhen. Development conditions, quantity and distribution of glaciers in Mount Qomolangma area[R]. Beijing: Tibetan Scientific Expedition of Chinese Academy of Sciences, 1975. ]
[23] Yasunari T, Inoue J. Characteristics of monsoonal precipitation around peaks and ridges in Shorong and Khumbu Himal[J]. Journal of the Japanese Society of Snow and Ice, 1978, 40: 26-32.
[24] Liu X L, Liu Y M, Wang X C, et al. Large scale dynamics and moisture sources of the precipitation over the western Tibetan Plateau in boreal winter[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(9): e2019JD032133, doi: 10.1029/2019JD032133.
[25] 杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(1): 1-10.
[25] [Yang Yaoxian, Hu Zeyong, Lu Fuquan, et al. Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41(1): 1-10. ]
[26] 任贾文, 秦大河, 康世昌, 等. 喜马拉雅山中段冰川变化及气候暖干化特征[J]. 科学通报, 2003(23): 2478-2482.
[26] [Ren Jiawen, Qin Dahe, Kang Shichang, et al. Characteristics of glacier change and climate warming and drying in the middle Himalayas[J]. Chinese Science Bulletin, 2003(23): 2478-2482. ]
[27] 杨续超, 张镱锂, 张玮, 等. 珠穆朗玛峰地区近34年来气候变化[J]. 地理学报, 2006, 61(7): 687-696.
[27] [Yang Xuchao, Zhang Yili, Zhang Wei, et al. Climate change in Mt. Qomolangma region in China during the last 34 years[J]. Acta Geographica Sinica, 2006, 61(7): 687-696. ]
[28] 侯书贵, 秦大河, Wake C P, 等. 珠穆朗玛峰地区冰川净积累量变化的冰芯记录及其气候意义[J]. 科学通报, 1999(21): 2336-2341.
[28] [Hou Shugui, Qin Dahe, Wake C P, et al. Ice core records of changes in glacier net accumulation in the Everest region and their climatic significance[J]. Chinese Science Bulletin, 1999(21): 2336-2341. ]
[29] 段克勤, 姚檀栋, 蒲健辰, 等. 喜马拉雅山地区冰川积累量记录的季风降水对气候变暖的响应[J]. 科学通报, 2002(19): 1508-1511.
[29] [Duan Keqin, Yao Tandong, Pu Jianchen, et al. The response of monsoon precipitation to climate warming recorded by glacier accumulation in the Himalayan Mountains[J]. Chinese Science Bulletin, 2002(19): 1508-1511. ]
[30] 张震, 刘时银, 魏俊锋, 等. 1974—2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[30] [Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Mass change of glaciers in Mt. Qomolangma (Everest) region from 1974 to 2012 as derived from remote sensing data[J]. Remote Sensing Technology and Application, 2018, 33(4): 731-740. ]
[31] Ren J W, Qin D H, Kang S C, et al. Glacier variations and climate warming and drying in the central Himalayas[J]. Chinese Science Bulletin, 2004, 49(1): 65-69.
[32] 聂勇, 张镱锂, 刘林山, 等. 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J]. 地理学报, 2010, 65(1): 13-28.
[32] [Nie Yong, Zhang Yili, Liu Linshan, et al. Monitoring glacier change based on remote sensing in the Mt. Qomolangma National Nature Preserve, 1976—2006[J]. Acta Geographica Sinica, 2010, 65(1): 13-28. ]
[33] DeBEER C M, Sharp M J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada[J]. Journal of Glaciology, 2009, 55(192): 691-700.
[34] 廖海军, 刘巧, 钟妍, 等. 1990—2019年贡嘎山地区典型冰川表碛覆盖变化及其空间差异[J]. 地理学报, 2021, 76(11): 2647-2659.
[34] [Liao Haijun, Liu Qiao, Zhong Yan, et al. Supraglacial debris-cover change and its spatial heterogeneity in the Mount Gongga, 1990—2019[J]. Acta Geographica Sinica, 2021, 76(11): 2647-2659. ]
Outlines

/