Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang
Received date: 2022-09-13
Revised date: 2022-11-15
Online published: 2023-08-03
The spatiotemporal differences and dynamic changes of total agricultural carbon emissions and intensity in Xinjiang, China, were investigated by analyzing agricultural materials, rice cultivation, livestock breeding, and straw burning. The convergence trends of agricultural carbon emissions intensity in 13 prefectures and cities were examined by performing spatial convergence analysis. The results revealed the following: (1) Although the total agricultural carbon emissions in Xinjiang from 2007 to 2019 increased steadily, the intensity of agricultural carbon emissions exhibited a decreasing trend. (2) In 2019, the total agricultural carbon emission was the highest in counties and cities of Ili Kazak Autonomous Prefecture and lowest in Turpan City. A declining trend of total agricultural carbon emissions was observed only in the counties and cities of Ili Kazak Autonomous Prefecture and Hotan region, whereas the rest of the regions exhibited an increasing trend. Generally, a “low in the north and high in the south” trend was observed in the intensity of agricultural carbon emissions in Xinjiang. (3) The dynamic evolutionary characteristics of agricultural carbon emission intensity varied widely across Xinjiang prefectures and cities. The kernel density curve showed an overall small leftward shift over time. Furthermore, the concentration of agricultural carbon emission intensity was increasing. (4) The agricultural carbon emission intensities of various prefectures and cities in Xinjiang exhibited significant β-convergence characteristics, which indicated that the gap in agricultural carbon emission intensities between prefectures and cities was narrowing. Moreover, the conditional β convergence rate was considerably higher than absolute β convergence, and the further incorporation of the spatial factor increased the convergence rate. The results of the study can be used for the development of low-carbon agriculture in Xinjiang to achieve “dual carbon” goals.
Wenhao XIA , Mingyang WANG , Lei JIANG . Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang[J]. Arid Land Geography, 2023 , 46(7) : 1145 -1154 . DOI: 10.12118/j.issn.1000-6060.2022.455
[1] | BP. BP Statistical Review of World Energy 2022[R/OL]. [2022-11-20]. https://www.bp.com/content/dam/bp/business-sites/en/glo-bal/corporate-/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf. |
[2] | 赵文晋, 李都峰, 王宪恩. 低碳农业的发展思路[J]. 环境保护, 2010(12): 38-39. |
[2] | [Zhao Wenjin, Li Dufeng, Wang Xian’en. Development ideas of low-carbon agriculture[J]. Environmental Protection, 2010(12): 38-39.] |
[3] | 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104-127. |
[3] | [Tian Yun, Yin Minhao. Re-evaluation of China’s agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104-127.] |
[4] | 冉锦成, 马惠兰, 苏洋. 西北五省农业碳排放测算及碳减排潜力研究[J]. 江西农业大学学报, 2017, 39(3): 623-632. |
[4] | [Ran Jincheng, Ma Huilan, Su Yang. A study on agricultural carbon emission and carbon emission reduction potential in five provinces in northwest China[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(3): 623-632.] |
[5] | 刘华军, 鲍振, 杨骞. 中国农业碳排放的地区差距及其分布动态演进——基于Dagum基尼系数分解与非参数估计方法的实证研究[J]. 农业技术经济, 2013(3): 72-81. |
[5] | [Liu Huajun, Bao Zhen, Yang Qian. The regional gap of China’s agricultural carbon emissions and its distribution dynamic evolution: An empirical study based on Dagum Gini coefficient decomposition and nonparametric estimation method[J]. Journal of Agrotechnical Economics, 2013(3): 72-81.] |
[6] | 张恒硕, 李绍萍, 彭民. 中国农村能源消费碳排放区域非均衡性及驱动因素动态识别[J]. 中国农村经济, 2022(1): 112-134. |
[6] | [Zhang Hengshuo, Li Shaoping, Peng Min. Regional imbalance of carbon emissions from China’s rural energy consumption and dynamic identification of driving factors[J]. Chinese Rural Economy, 2022(1): 112-134.] |
[7] | 周嘉, 王钰萱, 刘学荣, 等. 基于土地利用变化的中国省域碳排放时空差异及碳补偿研究[J]. 地理科学, 2019, 39(12): 1955-1961. |
[7] | [Zhou Jia, Wang Yuxuan, Liu Xuerong, et al. Spatial temporal differences of carbon emissions and carbon compensation in China based on land use change[J]. Scientia Geographica Sinica, 2019, 39(12): 1955-1961.] |
[8] | Rathna H, Phanna L, Putra A S, et al. Estimation of carbon dioxide emissions from a traditional nutrient-rich Cambodian diet food production system using life cycle assessment[J]. Sustainability, 2021, 13(7): 3660, doi: 10.3390/su13073660. |
[9] | Zhang L, Ruiz-Menjivar J, Tong Q, et al. Examining the carbon footprint of rice production and consumption in Hubei, China: A life cycle assessment and uncertainty analysis approach[J]. Journal of Environmental Management, 2021, 300: 113698, doi: 10.1016/j.jenvman.2021.113698. |
[10] | 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86. |
[10] | [Li Bo, Zhang Junbiao, Li Haipeng. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80-86.] |
[11] | 田云, 张俊飚, 尹朝静, 等. 中国农业碳排放分布动态与趋势演进——基于31个省(市、区)2002—2011年的面板数据分析[J]. 中国人口·资源与环境, 2014, 24(7): 91-98. |
[11] | [Tian Yun, Zhang Junbiao, Yin Zhaojing, et al. Distributional dynamics and trend evolution of China’s agricultural carbon emissions: An analysis on panel data of 31 provinces from 2002 to 2011[J]. China Population, Resources and Environment, 2014, 24(7): 91-98.] |
[12] | 龙志, 孙颖琦, 郎丽霞, 等. 黄土高原典型县域碳排放特征与时空格局——以庆城县为例[J]. 干旱区研究, 2022, 39(5): 1631-1641. |
[12] | [Long Zhi, Sun Yingqi, Lang Lixia, et al. Spatiotemporal patterns and characteristics of carbon emissions in the Loess Plateau: A case study of Qingcheng County[J]. Arid Zone Research, 2022, 39(5): 1631-1641.] |
[13] | 高鸣, 宋洪远. 中国农业碳排放绩效的空间收敛与分异——基于Malmquist-luenberger指数与空间计量的实证分析[J]. 经济地理, 2015, 35(4): 142-148, 185. |
[13] | [Gao Ming, Song Hongyuan. Dynamic changes and spatial agglomeration analysis of the Chinese agricultural carbon emissions performance[J]. Economic Geography, 2015, 35(4): 142-148, 185.] |
[14] | Li N, Li Y M, Mu H L, et al. Convergence of China’s agricultural greenhouse gases[J]. Applied Ecology and Environmental Research, 2020, 18(1): 609-624. |
[15] | Cui Y, Khan S U, Deng Y, et al. Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect[J]. Environmental Impact Assessment Review, 2022, 92: 106699, doi: 10.1016/j.eiar.2021.106699. |
[16] | IPCC. Climate change 2007:Mitigation of climate change. Contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2007: 63-67. |
[17] | 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203-208. |
[17] | [Duan Huaping, Zhang Yue, Zhao Jianbo, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203-208.] |
[18] | 杨乐, 邓辉, 李国学, 等. 新疆绿洲区秸秆燃烧污染物释放量及固碳减排潜力[J]. 农业环境科学学报, 2015, 34(5): 988-993. |
[18] | [Yang Le, Deng Hui, Li Guoxue, et al. Pollutant releases from crop residue burning and carbon emission mitigation potential by biochar in Xinjiang oasis[J]. Journal of Agro-Environment Science, 2015, 34(5): 988-993.] |
[19] | 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21-27. |
[19] | [Min Jisheng, Hu Hao. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21-27.] |
[20] | 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247-252. |
[20] | [Hu Xiangdong, Wang Jimin. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 247-252.] |
[21] | 毕于运, 高春雨, 王亚静, 等. 中国秸秆资源数量估算[J]. 农业工程学报, 2009, 25(12): 211-217. |
[21] | [Bi Yuyun, Gao Chunyu, Wang Yajing, et al. Estimation of straw resources in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(12): 211-217.] |
[22] | 杨骞, 司祥慧, 王珏. 减排增汇目标下中国粮食生产效率的测度及分布动态演进[J]. 自然资源学报, 2022, 37(3): 600-615. |
[22] | [Yang Qian, Si Xianghui, Wang Jue. The measurement and its distribution dynamic evolution of grain production efficiency in China under the goal of reducing pollution emissions and increasing carbon sink[J]. Journal of Natural Resources, 2022, 37(3): 600-615.] |
[23] | 姜磊, 柏玲. 中国能源强度的空间分布与收敛研究——基于动态空间面板模型的分析[J]. 西部论坛, 2014, 24(4): 61-69. |
[23] | [Jiang Lei, Bo Ling. Study on spatial distribution and convergence of China’s energy intensity: Analysis based on dynamic spatial panel model[J]. Western Forum, 2014, 24(4): 61-69.] |
[24] | Tobler W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46: 234, doi: 10.2307/143141. |
[25] | 王钰凯, 郭辉. 新疆旅游业生态效率时空分异与收敛性研究[J]. 干旱区地理, 2022, 45(4): 1320-1331. |
[25] | [Wang Yukai, Guo Hui. Spatial and temporal differentiation and convergence studies of the eco-efficiency of Xinjiang tourism industry[J]. Arid Land Geography, 2022, 45(4): 1320-1331.] |
[26] | 桂河, 李静, 尚梦媛. “双碳”背景下的宁夏农业碳排放时序特征、驱动机理与脱钩效应研究[J]. 中南林业科技大学学报(社会科学版), 2021, 15(6): 37-44. |
[26] | [Gui He, Li Jing, Shang Mengyuan. Study on temporal characteristics, driving mechanism and decoupling effect of agricultural carbon emission in Ningxia under the background of “double carbon”[J]. Journal of Central South University of Forestry & Technology (Social Sciences Edition), 2021, 15(6): 37-44.] |
[27] | 夏文浩, 潘生亮, 霍瑜, 等. 新疆农业面源污染的时空分异及动态演进——基于特色畜牧视角的再分析[J]. 资源开发与市场, 2022, 38(10): 1190-1199. |
[27] | [Xia Wenhao, Pan Shengliang, Huo Yu, et al. Spatial-temporal differentiation and dynamic evolution of agricultural non-point source pollution in Xinjiang: Re-analysis based on the perspective of characteristic animal husbandry[J]. Resource Development & Market, 2022, 38(10): 1190-1199.] |
[28] | 罗斯炫, 何可, 张俊飚. 增产加剧污染?——基于粮食主产区政策的经验研究[J]. 中国农村经济, 2020(1): 108-131. |
[28] | [Luo Sixuan, He Ke, Zhang Junbiao. The more grain production, the more fertilizers pollution: Empirical evidence from major grain-producing areas in China[J]. Chinese Rural Economy, 2020(1): 108-131.] |
[29] | 冉锦成, 苏洋, 胡金凤, 等. 新疆农业碳排放时空特征、峰值预测及影响因素研究[J]. 中国农业资源与区划, 2017, 38(8): 16-24. |
[29] | [Ran Jincheng, Su Yang, Hu Jinfeng, et al. Temporal and spatial characteristics, peak value forecast and influencing factors of agricultural carbon emissions in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(8): 16-24.] |
/
〈 |
|
〉 |