Plant Ecology

Carbon and nitrogen storage and allocation patterns of Picea crassifolia forest with different stand density

  • Yiming FENG ,
  • Chunyan LYU ,
  • Ling WANG ,
  • Weijun ZHAO ,
  • Xue’e MA ,
  • Junlin DU ,
  • Junling HE
Expand
  • 1. Hexi University, Zhangye 734000, Gansu, China
    2. Gansu Qilian Mountain National Nature Reserve Management Center, Zhangye 734000, Gansu, China
    3. Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province, Zhangye 734000, Gansu, China

Received date: 2022-09-22

  Revised date: 2022-11-06

  Online published: 2023-08-03

Abstract

This study investigated the carbon and nitrogen sequestration capacity and the recycling and influence mechanisms of the Picea crassifolia forest ecosystem in the Qilian Mountains, northwest China. The stand densities of 350 plants·hm−2, 850 plants·hm−2, 1000 plants·hm−2, 1400 plants·hm−2, 1600 plants·hm−2, 1950 plants·hm−2, 2100 plants·hm−2, 2300 plants·hm−2, and 3000 plants·hm−2 of P. crassifolia forest were considered for field investigation, sample collection and analysis, carbon and nitrogen storage, and allocation patterns of the P. crassifolia forest ecosystem. The results revealed that: (1) The mean carbon content value of the arbor layer in the P. crassifolia forest was 497.11 g·kg−1, and the nitrogen content was 4.43 g·kg−1. The allocation patterns of the carbon content in each organ followed the order of stem>root>leaf>branch>bark, and the distribution pattern of nitrogen content was leaf>branch>root>bark>trunk. The carbon and nitrogen content of the understorey vegetation layer generally exhibited a sequence of shrub layer>herb layer>litter layer, and the aboveground part>underground part. The content of carbon and nitrogen in the soil layer decreased with the increase in the stand density and decreased with the increase in the soil depth. (2) The carbon storage of the P. crassifolia forest ecosystem revealed a two-peak pattern distribution with the increase in the stand density. Nitrogen storage first increased and subsequently fluctuated with the increase in the stand density. When the density was 850 plants·hm−2, carbon and nitrogen storage were the highest (500.76 t·hm−2 and 25.00 t·hm−2, respectively), and when the density was 3000 plants·hm−2, the carbon and nitrogen storage were the lowest (315.52 t·hm−2 and 12.52 t·hm−2, respectively). With the increase in the stand density, the proportion of vegetation carbon and nitrogen storage gradually increased, and the proportion of soil carbon and nitrogen storage gradually decreased. The allocation patterns of carbon storage followed the order of the soil layer (73.53%)>tree layer (17.03%)>understory layer (9.44%), and nitrogen storage followed the soil layer (87.63%)>understory layer (9.90%)>tree layer (2.47%). (3) The results revealed that the stand density is closely related to forest carbon and nitrogen storage and allocation patterns. Low density (850 plants·hm−2) can improve carbon and nitrogen sequestration capacities of vegetation and soil, which is the best retention density of middle-aged P. crassifolia forest in the Qilian Mountains. The results provide a scientific basis for explaining the influence of the stand density on the carbon and nitrogen sequestration capacity of forest ecosystems and the structural management of forests.

Cite this article

Yiming FENG , Chunyan LYU , Ling WANG , Weijun ZHAO , Xue’e MA , Junlin DU , Junling HE . Carbon and nitrogen storage and allocation patterns of Picea crassifolia forest with different stand density[J]. Arid Land Geography, 2023 , 46(7) : 1133 -1144 . DOI: 10.12118/j.issn.1000-6060.2022.481

References

[1] Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185-190.
[2] 陈东升, 孙晓梅, 张守攻. 不同年龄日本落叶松人工林生物量、碳储量及养分特征[J]. 应用生态学报, 2016, 27(12): 3759-3768.
[2] [Chen Dongsheng, Sun Xiaomei, Zhang Shougong. Biomass, carbon storage and nutrient characteristics in Larix kaempferi plantations at different stand ages[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3759-3768.]
[3] Lu X T, Yin J X, Jepsen M R, et al. Ecosystem carbon storage and partitioning in a tropical seasonal forest in southwestern China[J]. Forest Ecology and Management. 2010, 260: 1798-1803.
[4] 李威, 黄玫, 张远东, 等. 中国国家森林公园碳储量及固碳速率的时空动态[J]. 应用生态学报, 2021, 32(3): 799-809.
[4] [Li Wei, Huang Mei, Zhang Yuandong, et al. Spatial-temporal variations of carbon storage and carbon sequestration rate in China’s national forest parks[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 799-809.]
[5] Fowler Z K, Adams M B, Peterjohn W T. Will more nitrogen enhance carbon storage in young forest stands in central Appalachia[J]. Forest Ecology and Management, 2015, 337: 144-152.
[6] Eldegard K, Scholten J, Stokland J N, et al. The influence of stand density on bilberry (Vaccinium myrtillus L.) cover depends on stand age, solar irradiation, and tree species composition[J]. Forest Ecology and Management, 2019, 432: 582-590.
[7] 卢立华, 农友, 李华, 等. 保留密度对杉木人工林生长和生物量及经济效益的影响[J]. 应用生态学报, 2020, 31(3): 717-724.
[7] [Lu Lihua, Nong You, Li Hua, et al. Effects of retention density on growth, biomass, and economic benefit of Cunninghamia lanceolata plantation[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 717-724.]
[8] 代林利, 周丽丽, 伍丽华, 等. 不同林分密度杉木林生态系统碳密度及其垂直空间分配特征[J]. 生态学报, 2022, 42(2): 710-719.
[8] [Dai Linli, Zhou Lili, Wu Lihua, et al. Carbon density and vertical spatial distribution characteristics of Cunninghamia lanceolata forest ecosystem with different stand density[J]. Acta Ecologica Sinica, 2022, 42(2): 710-719.]
[9] Noh N J, Kim C, Bae S W, et al. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities[J]. Journal of Plant Ecology, 2013, 6(5): 368-379.
[10] Mayer M, Prescott C E, Abaker W E A, et al. Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis[J]. Forest Ecology and Management, 2020, 466: 118-127.
[11] 王金叶, 王艺林, 金博文, 等. 干旱半干旱区山地森林的水分调节功能[J]. 林业科学, 2001, 37(5): 120-125.
[11] [Wang Jinye, Wang Yilin, Jin Bowen, et al. Studies on regulation of forest hydrology and microclimate in arid and semi-arid area of west China[J]. Scientia Silvae Sinicae, 2001, 37(5): 120-125.]
[12] 拓锋, 刘贤德, 黄冬柳, 等. 祁连山大野口流域青海云杉种群数量动态[J]. 生态学报, 2021, 41(17): 6871-6882.
[12] [Ta Feng, Liu Xiande, Huang Dongliu, et al. Quantitative dynamica of Picea crassifolia population in Dayekou Basin of Qilian Mountains[J]. Acta Ecologica Sinica, 2021, 41(17): 6871-6882.]
[13] 刘思敏, 马剑, 牛赟, 等. 祁连山青海云杉林分结构及其与环境因子的关系[J]. 中南林业科技大学学报, 2021, 41(7): 107-114.
[13] [Liu Simin, Ma Jian, Niu Yun, et al. Stand structure and its relationship with environmental factors of Picea crassifolia in Qilian Mountains[J]. Journal of Central South University of Forestry & Technology, 2021, 41(7): 107-114.]
[14] 杜苗苗, 张芬, 勾晓华, 等. 祁连山中东部青海云杉径向生长对气候变暖的响应差异[J]. 冰川冻土, 2022, 44(1): 14-23.
[14] [Du Miaomiao, Zhang Fen, Gou Xiaohua, et al. Different responses of radial growth of Picea crassifolia to climate warming in the middle and eastern Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 14-23.]
[15] 高海宁, 李彩霞, 孙小妹, 等. 祁连山北麓不同海拔土壤化学计量特征[J]. 中国沙漠, 2021, 41(1): 219-227.
[15] [Gao Haining, Li Caixia, Sun Xiaomei, et al. Stoichiometry characteristics of soil at different altitudes in the Qilian Mountains[J]. Journal of Desert Research, 2021, 41(1): 219-227.]
[16] 拓锋, 刘贤德, 刘润红, 等. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183.
[16] [Ta Feng, Liu Xiande, Liu Runhong, et al. Spatial distribution patterns and association of Picea crassifolia population in Dayekou Basin of Qilian Mountains, northwestern China[J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1172-1183.]
[17] 曾立雄, 雷蕾, 王晓荣, 等. 海拔梯度对祁连山青海云杉林乔木层和土壤层碳密度的影响[J]. 生态学报, 2018, 38(20): 7168-7177.
[17] [Zeng Lixiong, Wang Xiaorong, et al. Effect of altitudinal variation on carbon density in arbor layer and soil layer of Picea crassifolia forest in Qilian Mountains[J]. Acta Ecologica Sinica, 2018, 38(20): 7168-7177.]
[18] Qi C L, Jiao L, Xue R H, et al. Time scale effects of radial growth responses of two dominant coniferous trees on climate change in the eastern Qilian Mountains[J]. Forests, 2022, 13(1): 72-72.
[19] Wan Y Y, Yu P T, Li X Q, et al. Divergent seasonal patterns of Qinghai spruce growth with elevation in northwestern China[J]. Forests, 2022, 13(3): 388-388.
[20] 王金叶, 车克钧, 蒋志荣. 祁连山青海云杉林碳平衡研究[J]. 西北林学院学报, 2000, 15(1): 9-14.
[20] [Wang Jinye, Che Kejun, Jiang Zhirong. Study on carbon balance of Picea crassifolia in Qilian Mountains[J]. Journal of Northwest Forestry University, 2000, 15(1): 9-14.]
[21] 刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996: 31-33.
[21] [Liu Guangsong. Soil physicochemical analysis and profile description[M]. Beijing: China Standard Press, 1996: 31-33.]
[22] 齐瑞, 刘锦乾, 李波, 等. 青藏高原东缘亚高山针叶林碳氮磷生态化学计量特征[J]. 西北植物学报, 2020, 40(12): 2140-2147.
[22] [Qi Rui, Liu Jinqian, Li Bo, et al. Stoichiometry of carbon, nitrogen, and phosphorus of subalpine coniferous forests on the eastern edge of Qinghai-Tibet Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(12): 2140-2147.]
[23] 那萌, 刘婷岩, 张彦东, 等. 林分密度对水曲柳人工林碳储量的影响[J]. 北京林业大学学报, 2017, 39(1): 20-26.
[23] [Na Meng, Liu Tingyan, Zhang Yandong, et al. Effects of stock density on carbon storage in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2017, 39(1): 20-26.]
[24] 张雨鉴, 宋娅丽, 王克勤. 滇中亚高山森林乔木层各器官生态化学计量特征[J]. 生态学杂志, 2019, 38(6): 1669-1678.
[24] [Zhang Yujian, Song Yali, Wang Keqin. Ecological stoichiometry of various organs in the tree layer of subalpine forests in central Yunnan, China[J]. Chinese Journal of Ecology, 2019, 38(6): 1669-1678.]
[25] 马鑫钰, 贡璐, 朱海强, 等. 不同碳输入对天山雪岭云杉林土壤化学计量特征的影响[J]. 环境科学, 2023, 44(5): 2715-2723.
[25] [Ma Xinyu, Gong Lu, Zhu Haiqiang, et al. Effects of different carbon inputs on soil stoichiometry in Tianshan Mountains[J]. Environmental Science, 2023, 44(5): 2715-2723.]
[26] 辜翔, 张仕吉, 刘兆丹, 等. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608.
[26] [Gu Xiang, Zhang Shiji, Liu Zhaodan, et al. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China[J]. Chinese Journal of Plant Ecology, 2018, 42(5): 595-608.]
[27] 郭鑫, 魏天兴, 陈宇轩, 等. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征[J]. 干旱区地理, 2022, 45(6): 1899-1907.
[27] [Guo Xiaoxia, Wei Tianxing, Chen Yuxuan, et al. The characteristics of soil ecological stoichiometry in typical fallow restored vegetations in the loess hilly areas[J]. Arid Land Geography, 2022, 45(6): 1899-1907.]
[28] 刘丽贞, 陈林, 庞丹波, 等. 基于稳定碳同位素分析宁夏典型林分土壤有机碳分布格局及影响因素[J]. 西北植物学报, 2021, 41(5): 846-853.
[28] [Liu Lizhen, Chen Lin, Pang Danbo, et al. Soil organic carbon distribution patterns and influencing factors in Ningxia typical stand based on stable carbon isotope analysis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(5): 846-853.]
[29] 岳军伟, 关晋宏, 邓磊, 等. 甘肃亚高山云杉人工林生态系统碳、氮储量动态和分配格局[J]. 生态学报, 2018, 38(21): 7790-7800.
[29] [Yue Junwei, Guan Jinhong, Deng Lei, et al. Dynamics and allocation patterns of carbon and nitrogen storage in Picea asperata plantations in subalpine areas of Gansu Province[J]. Acta Ecologica Sinica, 2018, 38(21): 7790-7800.]
[30] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1): 139-151.
[31] 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5): 518-522.
[31] [Zhou Yurong, Yu Zhenliang, Zhao Shidong. Carbon storage and budget of major Chinese forest types[J]. Acta Phytoecologica Sinica, 2000, 24(5): 518-522.]
[32] Zheng X L, Zhao C Y, Peng S Z, et al. Soil CO2 efflux along an elevation gradient in Qinghai spruce forests in the upper reaches of the Heihe River, northwest China[J]. Environmental Earth Sciences, 2014, 71(5): 2065-2076.
[33] 刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074-1083.
[33] [Liu Shun, Luo Da, Liu Qianli, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan[J]. Acta Ecologica Sinica, 2017, 37(4): 1074-1083.]
[34] 徐丽, 何念鹏. 中国森林生态系统氮储量分配特征及其影响因素[J]. 中国科学: 地球科学, 2020, 50(10): 1374-1385.
[34] [Xu Li, He Nianpeng. Nitrogen storage and allocation in China’s forest ecosystems[J]. Science China Earth Sciences, 2020, 50(10): 1374-1385.]
[35] 王志杰, 房子怡, 张菲, 等. 塞罕坝地区典型人工林生物碳贮量的比较[J]. 林业与生态科学, 2022, 37(2): 174-179.
[35] [Wang Zhijie, Fang Ziyi, Zhang Fei, et al. Comparison of biocarbon storage of typical plantation in Saihanba area[J]. Forestry and Ecological Sciences, 2022, 37(2): 174-179.]
[36] 杨支齐, 杜虎, 曾馥平, 等. 广西主要人工林生态系统氮储量格局[J]. 生态学报, 2022, 42(13): 5446-5457.
[36] [Yang Zhiqi, Du Hu, Zeng Fuping, et al. Nitrogen storage patterns of main plantation ecosystems in Guangxi[J]. Acta Ecologica Sinica, 2022, 42(13): 5446-5457.]
[37] 何潇, 周超凡, 雷相东, 等. 长白落叶松人工林林分碳储量生长模型系研究[J]. 北京林业大学学报, 2021, 43(11): 1-10.
[37] [He Xiao, Zhou Chaofan, Lei Xiangdong, et al. Stand carbon stock growth model system for Larix olgensis plantation[J]. Journal of Beijing Forestry University, 2021, 43(11): 1-10.]
Outlines

/