Decomposition characteristics of two desert plant leaf under natural light and shade environment
Received date: 2022-09-04
Revised date: 2022-12-13
Online published: 2023-07-24
In the southern edge of the Taklimakan Desert, the environmental conditions are harsh, the soil nutrient content is deficient, the plant community structure and composition are relatively simple. The impact of various environmental factors on litter decomposition is complex and specific. To explore the decomposition characteristics of litter in extremely arid areas, we conducted a study using litter decomposition bags to analyze the leaf litter of two dominant desert plant species, Alhagi sparsifolia and Karelinia caspia, under natural light and shade treatments. We investigated the mass loss and release characteristics of carbon (C) and nitrogen (N) in leaf litter. The results were as follows: (1) The mass loss process of both plant litter samples followed an exponential decay model. (2) After nine months of decomposition, the mass loss rates of the Alhagi sparsifolia and Karelinia caspia leaf litter samples were 39.81%, 45.43%, 22.22%, and 20.06% under natural light and shade treatments, respectively. The decomposition rate of litter under light conditions was significantly higher than that under shade conditions (P<0.05). (3) Throughout the decomposition process, the C content of both plant litter samples was in a state of release, whereas the N content exhibited different release states. The N content of Alhagi sparsifolia leaf litter exhibited an enrichment-release-enrichment state, whereas that of Karelinia caspia leaf litter exhibited an enrichment state. In conclusion, our study suggests that light radiation is the primary driving factor affecting litter decomposition in extremely arid areas.
Jianian WANG , Xiangyi LI , Chengdao LI , Ailin ZHANG , Lisha LIN . Decomposition characteristics of two desert plant leaf under natural light and shade environment[J]. Arid Land Geography, 2023 , 46(6) : 949 -957 . DOI: 10.12118/j.issn.1000-6060.2022.434
[1] | 陈立新, 陈祥伟, 段文标. 落叶松人工林凋落物与土壤肥力变化的研究[J]. 应用生态学报, 1998, 9(6): 581-586. |
[1] | [Chen Lixin, Chen Xiangwei, Duan Wenbiao. Study on the changes of litter and soil fertility in larch plantation[J]. Chinese Journal of Applied Ecology, 1998, 9(6): 581-586.] |
[2] | 曾加芹. 森林凋落物研究开展[J]. 防护林科技, 2017(增刊1): 80-83. |
[2] | [Zeng Jiaqin. Advances in forest litter research[J]. Protection Forest Science and Technology, 2017(Suppl. 1): 80-83.] |
[3] | Swift M J, Heal O W, Anderson J M. Decomposition in terrestrial ecosystems[J]. Studies in Ecology, 1979, 5(14): 2772-2774. |
[4] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[4] | [Jia Bingrui. Litter decomposition and its underlying mechanisms[J]. Chinese Journal of Plant Ecology, 2019, 43(8): 648-657.] |
[5] | Parton W, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315: 361-364. |
[6] | Throop H L, Archer S R. Resolving the dryland decomposition conundrum: Some new perspectives on potential drivers[J]. Progress in Botany, 2009, 70: 171-194. |
[7] | 闫鹏飞, 展鹏飞, 肖德荣, 等. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[7] | [Yan Pengfei, Zhan Pengfei, Xiao Der- ong, et al. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function[J]. Chinese Journal of Plant Ecology, 2019, 43(2): 107-118.] |
[8] | 董学德, 高鹏, 李腾, 等. 土壤微生物群落对麻栎-刺槐混交林凋落物分解的影响[J]. 生态学报, 2021, 41(6): 2315-2325. |
[8] | [Dong Xuede, Gao Peng, Li Teng, et al. Effects of soil microbial community on the litter decomposition in mixed Quercus acutissima Carruth. and Robinia pseudoacacia L. forest[J]. Acta Ecologica Sinica, 2021, 41(6): 2315-2325.] |
[9] | 王小平, 杨雪, 杨楠, 等. 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响[J]. 生态学报, 2019, 39(17): 6264-6272. |
[9] | [Wang Xiaoping, Yang Xue, Yang Nan, et al. Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community[J]. Acta Ecologica Sinica, 2019, 39(17): 6264-6272.] |
[10] | Kwabiah A B, Voroney R P, Palm C A, et al. Inorganic fertilizer enrichment of soil: Effect on decomposition of plant litter under subhumid tropical conditions[J]. Biology and Fertility of Soils, 1999, 30: 224-231. |
[11] | 王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11): 3300-3310. |
[11] | [Wang Xinyuan, Zhao Xueyong, Li Yulin, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3300-3310.] |
[12] | 李成道, 李向义, Henry J Sun, 等. 极端干旱区花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)叶片凋落物分解特征[J]. 中国沙漠, 2019, 39(2): 196-204. |
[12] | [Li Chengdao, Li Xiangyi, Henry J Sun, et al. Decomposition of Karelinia caspia, Alhagi sparsifolia and Populus euphratica in extremely arid areas[J]. Journal of Desert Research, 2019, 39(2): 196-204.] |
[13] | 张力斌, 何明珠, 张克存, 等. 干旱风沙区植被重建初期对土壤微生物群落结构的影响[J]. 干旱区地理, 2022, 45(6): 1916-1926. |
[13] | [Zhang Libin, He Mingzhu, Zhang Kecun, et al. Effect of preliminary vegetation reconstruction on soil microorganism community structure in arid desert area[J]. Arid Land Geography, 2022, 45(6): 1916-1926.] |
[14] | 范琳杰, 李向义, 李成道, 等. 极端干旱区花花柴(Karelinia caspia)和胡杨(Populus euphratica)叶凋落物分解和养分释放特征[J]. 干旱区研究, 2021, 38(2): 479-486. |
[14] | [Fan Linjie, Li Xiangyi, Li Chengdao, et al. Decomposition and nutrient release characteristics of Karelinia caspia and Populus euphratica leaf litters in extreme arid regions[J]. Arid Zone Research, 2021, 38(2): 479-486.] |
[15] | 涂利华, 胡红玲, 胡庭兴, 等. 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应[J]. 植物生态学报, 2012, 36(2): 99-108. |
[15] | [Tu Lihua, Hu Hongling, Hu Tingxing, et al. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the rainy of China[J]. Chinese Journal of Plant Ecology, 2012, 36(2): 99-108.] |
[16] | Li K L, Li H Y, Huangfu C H, et al. Species-specific effects of leaf litter on seedling emergence and growth of the invasive Flaveria bidentis and its co-occurring native species: Common garden test[J]. Plant Ecology, 2016, 217(12): 1-9. |
[17] | 铁烈华, 符饶, 张仕斌, 等. 模拟氮、硫沉降对华西雨屏区常绿阔叶林凋落叶分解速率的影响[J]. 应用生态学报, 2018, 29(7): 2243-2250. |
[17] | [Tie Liehua, Fu Rao, Zhang Shibin, et al. Effects of simulated nitrogen and sulfur deposition on litter decomposition rate in an evergreen broad-leaved forest in the rainy area of western China[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2243-2250.] |
[18] | McClaugherty C A, Aber J D, Melillo J M. Decomposition dynamics of fine roots in forested ecosystems[J]. Oikos, 1984, 42: 378-386. |
[19] | 郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4): 93-100. |
[19] | [Guo Jianfen, Yang Yusheng, Chen Guangshui, et al. Advances in the decomposition of forest litter[J]. Scientia Silvae Sinicae, 2006, 42(4): 93-100.] |
[20] | Song P, Zhang N L, Ma K P, et al. Impacts of global warming on litter decomposition[J]. Acta Ecologica Sinica, 2014, 34(6): 1327-1339. |
[21] | 谌贤, 刘洋, 唐实玉, 等. 川西亚高山森林凋落物不同分解阶段基质质量特征[J]. 西北植物学报, 2017, 37(3): 586-594. |
[21] | [Chen Xian, Liu Yang, Tang Shiyu, et al. Characteristics of substrate quality variation at different litter decomposition stages in subalpine forest of western Sichuan[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(3): 586-594.] |
[22] | Brandt L A, King J Y, Milchunas D G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem[J]. Global Change Biology, 2007, 13: 2193-2205. |
[23] | Austin A T, Lucía V. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J]. Nature, 2006, 442: 555-558. |
[24] | Kochy M, Wilson S D. Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie[J]. Ecology, 1997, 78: 732-739. |
[25] | Taylor B R, Dennis P. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test[J]. Ecology, 1989, 70(1): 97-104. |
[26] | Bohlen P J, Parmelee R W, Mccartney D A, et al. Earthworm effects on carbon and nitrogen dynamics of surface litter in corn agroecosystems[J]. Ecological Applications, 1997, 7(4): 1341-1349. |
[27] | Moore T R, Trofymow J A, Taylor B, et al. Litter decomposition rates in Canadian forests[J]. Global Change Biology, 1999, 5(1): 75-82. |
[28] | Bray S R, Kitajima K, Mack M C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate[J]. Soil Biology and Biochemistry, 2012, 49: 30-37. |
[29] | 章志琴, 林开敏, 邹双全, 等. 不同调控措施对杉木枯落物分解的影响[J]. 浙江林学院学报, 2006, 23(1): 65-69. |
[29] | [Zhang Zhiqin, Lin Kaimin, Zou Shuangquan, et al. Decomposition of Cunninghamia lanceolata litter with different control measures[J]. Journal of Zhejiang Forestry College, 2006, 23(1): 65-69.] |
[30] | Sylvain C, Jean W, Olaf B, et al. Litter composition rather than plant presence affects decomposition of tropical litter mixtures[J]. Plant and Soil, 2011, 343(1/2): 273-286. |
[31] | He M, Zhao R D, Tian Q X, et al. Predominant effects of litter chemistry on lignin degradation in the early stage of leaf litter decomposition[J]. Plant Soil, 2019, 442: 453-469. |
[32] | Day T A, Zhang E T, Ruhland C T. Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata litter in the Sonoran Desert[J]. Plant Ecology, 2007, 193: 185-194. |
[33] | Berg Bj?rn. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest Ecology and Management, 2000, 133(1): 13-22. |
[34] | 杨万勤, 邓仁菊, 张健. 森林凋落物分解及其对全球气候变化的响应[J]. 应用生态学报, 2007, 18(12): 2889-2895. |
[34] | [Yang Wanqin, Deng Renju, Zhang Jian. Forest litter decomposition and its responses to global climate change[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2889-2895.] |
[35] | Ngao J, Epron D, Brechet C, et al. Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter[J]. Global Change Biology, 2005, 11: 1768-1776. |
[36] | Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44(2): 81-99. |
[37] | Berg B, Staaf H. Leaching, accumulation and release of nitrogen in decomposing forest litter[J]. Ecological Bulletins, 1981, 33: 163-173. |
[38] | Berenstecher P, Vivanco L, Pérez L I, et al. Sunlight doubles aboveground carbon loss in a seasonally dry woodland in Patagonia[J]. Current Biology, 2020, 30(16): 3243-3251. |
[39] | Wu Z D, Wang Y X, Cai Z F, et al. Amount and decomposition characteristics of litters in citrus orchard in Fuzhou, China[J]. Journal of Ecology and Rural Environment, 2010, 26(3): 231-234. |
[40] | Wang Q W, Pieristè M, Liu C G, et al. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey[J]. New Phytologist, 2021, 229: 2625-2636. |
[41] | 周丽, 李彦, 唐立松, 等. 光降解在凋落物分解中的作用[J]. 生态学杂志, 2011, 30(9): 2045-2052. |
[41] | [Zhou Li, Li Yan, Tang Lisong, et al. Roles of photodegradation in litter decomposition[J]. Chinese Journal of Ecology, 2011, 30(9): 2045-2052.] |
[42] | Spohn M, Berg B. Import and release of nutrients during the first five years of plant litter decomposition[J]. Soil Biology and Biochemistry, 2023, 176: 108878, doi: 10.1016/j.soilbio.2022.108878. |
[43] | Frey S, Elliott E, Paustian K, et al. Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem[J]. Soil Biology and Biochemistry, 2000, 32(5): 689-698. |
[44] | Gallo M E, Sinsabaugh R L, Cabaniss S E. The role of ultraviolet radiation in litter decomposition in arid ecosystems[J]. Applied Soil Ecology, 2006, 34: 82-91. |
/
〈 | 〉 |