Redistribution characteristics of aeolian sand flow on different underlying surfaces at the edge of Hobq Desert and their enrichment effect on nutrients
Received date: 2022-08-17
Revised date: 2022-09-27
Online published: 2023-07-24
Taking the five kinds of underlying surfaces i.e. mobile sand, sand sealing grass belt, wind and sand barrier forest, farmland shelter forest and farmland of Hobq Desert as the research objects, the particle size and elemental characteristics of sediments in the surface and 0-100 cm aeolian sand flow were analyzed by field observation and indoor analysis. The results showed that: (1) The surface roughness of farmland and vegetation-covered land increased significantly compared with moving sand, the wind speed at 10 cm decreased by more than 18%, and the total sand transport decreased by 85.6% on average. (2) The content of Cu, Fe, Mn and Zn in different grain sizes of sand is obviously different, Cu and Zn elements have the highest content in silt sand, Mn elements have the highest content in very fine sand, and Fe elements have the highest content in fine sand. (3) Under the redistribution of aeolian sand flow materials, the content of silt and very fine sand in aeolian sand flow increases with the uplift of height, which increases by about 14 times on average compared with the surface, and the content of Cu, Zn and Mn elements increases accordingly, the content of fine sand in aeolian sand flow increases first and then decreases, and the Fe element content also shows a trend of first increasing and then decreasing, which is closely related to the element content in the original surface and the element content characteristics of different particle sizes in surface sediments.
Min YAN , Yuxin CHEN , Hejun ZUO , Haibing WANG , Cheng XI . Redistribution characteristics of aeolian sand flow on different underlying surfaces at the edge of Hobq Desert and their enrichment effect on nutrients[J]. Arid Land Geography, 2023 , 46(6) : 889 -899 . DOI: 10.12118/j.issn.1000-6060.2022.400
[1] | 王书转. 长期施肥条件下土壤微量元素化学特性及有效性研究[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2016. |
[1] | [Wang Shuzhuan. Study on chemical properties and effectiveness of soil trace elements under long-term fertilization conditions[D]. Beijing: Graduate University of the Chinese Academy of Sciences (Research Center for Water and Soil Conservation and Ecological Environment of the Ministry of Education), 2016.] |
[2] | Shuman L M. Extraction method for soil microelements[J]. Soil Science, 1985, 140: 11-12. |
[3] | Tessier, Campbell, Blsson. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem, 1979, 51(7): 844-851. |
[4] | Ribeiro, Bruno T, Nascimento, et al. Assessment of trace element contents in soils and water from Cerrado Wetlands, Triangulo Mineiro Region[J]. Revista Brasileira de Ciência do Solo, 2019, 43: e0180059, doi: 10.1590/18069657RBCS20180059. |
[5] | Zhang F S, Yin G H, Wang Z Y, et al. Quantifying spatial variability of selected soil trace elements and their scaling relationships using multifractal techniques[J]. PloS one, 2013, 8(7): e69326, doi: 10.1371/journal.pone.0069326. |
[6] | 孙先良. 从植物微量元素营养需求来发展微肥[J]. 化工进展, 2001(11): 5-7. |
[6] | [Sun Xianliang. Development of micro-fertilizer[J]. Chemical Industry and Engineering Progress, 2001(11): 5-7.] |
[7] | 陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2005: 127-133. |
[7] | [Chen Huaiman. Environmental soil science[M]. Beijing: Science Press, 2005: 127-133.] |
[8] | 文勇立, 李辉, 李学伟, 等. 川西北草原土壤及冷暖季牧草微量元素含量比较[J]. 生态学报, 2007, 27(7): 2837-2846. |
[8] | [Wen Yongli, Li Hui, Li Xuewei, et al. Research on comparison of the content of trace element in soil and forage in northwest Sichuan grassland[J]. Acta Ecologica Sinica, 2007, 27(7): 2837-2846.] |
[9] | Kyriaki D, Sergio C, Silvia M, et al. Trace elements mobility in soils from the hydrothermal area of Nisyros (Greece)[J]. Annals of Geophysics, 2015, 57: 149-155. |
[10] | 张欣. 山地丘陵区环境因子对耕地土壤剖面微量元素含量的影响[D]. 重庆: 西南大学, 2021. |
[10] | [Zhang Xin. The influence of environmental factors on the content of trace elements in cultivated soil profile in mountainous and hilly areas[D]. Chongqing: Southwest University, 2021.] |
[11] | 刘芳, 郝玉光, 辛智鸣, 等. 乌兰布和沙区不同下垫面的土壤风蚀特征[J]. 林业科学, 2017, 53(3): 128-137. |
[11] | [Liu Fang, Hao Yuguang, Xin Zhiming, et al. Characteristics of soil wind erosion under different underlying surface conditions in Ulanbuh Desert[J]. Science Silvae Sinicae, 2017, 53(3): 128-137.] |
[12] | 吴盈盈, 王振亭. 河套平原土壤风蚀风险评估[J]. 干旱区地理, 2023, 46(3): 418-427. |
[12] | [Wu Yingying, Wang Zhenting. Risk assessment of soil wind erosion in Hetao Plain[J]. Arid Land Geography, 2023, 46(3): 418-427.] |
[13] | 张华, 李锋瑞, 张铜会, 等. 春季裸露沙质农田土壤风蚀量动态与变异特征[J]. 水土保持学报, 2002, 16(1): 29-32, 79. |
[13] | [Zhang Hua, Li Fengrui, Zhang Tonghui, et al. Field observation of wind erosion sediment in bare sandy farmland during erosion-prone spring[J]. Journal of Soil and Water Conservation, 2002, 16(1): 29-32, 79.] |
[14] | 张春来, 邹学勇, 董光荣, 等. 植被对土壤风蚀影响的风洞实验研究[J]. 水土保持学报, 2003, 17(3): 31-33. |
[14] | [Zhang Chunlai, Zou Xueyong, Dong Guangrong, et al. Wind tunnel studies on influences of vegetation on soil wind erosion[J]. Journal of Soil and Water Conservation, 2003, 17(3): 31-33.] |
[15] | 董光荣, 李长治, 金炯, 等. 关于土壤风蚀风洞模拟实验的某些结果[J]. 科学通报, 1987, 32(4): 297-301. |
[15] | [Dong Guangrong, Li Changzhi, Jin Jiong, et al. Some results of wind tunnel simulation experiments on soil wind erosion[J]. Chinese Science Bulletin, 1987, 32(4): 297-301.] |
[16] | 张伟民, 王涛, 汪万福, 等. 复杂风况条件下戈壁输沙量变化规律的研究[J]. 中国沙漠, 2011, 31(3): 543-549. |
[16] | [Zhang Weimin, Wang Tao, Wang Wanfu, et al. Variation of Gobi sand transport amount under multi-wind directions[J]. Journal of Desert Research, 2011, 31(3): 543-549.] |
[17] | Dong Z B, Man D Q, Luo W Y, et al. Horizontal aeolian sediment flux in the Minqin area, a major source of Chinese dust storms[J]. Geomorphology, 2010, 116: 58-66. |
[18] | 王自龙, 赵明, 冯向东, 等. 民勤绿洲外围不同下垫面条件下风沙流结构的观测研究[J]. 水土保持学报, 2009, 23(4): 72-75, 108. |
[18] | [Wang Zilong, Zhao Ming, Feng Xiangdong, et al. Study on structure of drifting sand flux under different underlying surface conditions of Minqin oasis external[J]. Journal of Soil and Water Conservation, 2009, 23(4): 72-75, 108.] |
[19] | 王涛, 蒙仲举, 党晓宏, 等. 库布齐沙漠典型防护林土壤养分特征[J]. 水土保持学报, 2022, 36(1): 325-331. |
[19] | [Wang Tao, Meng Zhongju, Dang Xiaohong, et al. Soil nutrient characteristics of typical shelterbelt in Hobq Desert[J]. Journal of Soil and Water Conservation, 2022, 36(1): 325-331.] |
[20] | 潘美慧, 薛雯轩, 伍永秋, 等. 西藏定结地区爬坡沙丘粒度特征分析[J]. 干旱区地理, 2019, 42(6): 1337-1345. |
[20] | [Pan Meihui, Xue Wenxuan, Wu Yongqiu, et al. Grain size characteristics of the climbing dunes in Dinggye area of Tibet[J]. Arid Land Geography, 2019, 42(6): 1337-1345.] |
[21] | Hansen E, Zimmerman S D, Dijk D V, et al. Patterns of wind flow and aeolian deposition on a parabolic dune on the southeastern shore of Lake Michigan[J]. Geomorphology, 2009, 105(1/2): 147-157. |
[22] | 刘海霞, 李晋昌, 苏志珠, 等. 毛乌素沙地西南缘灌丛沙丘沉积物的粒度和元素特征[J]. 中国沙漠, 2015, 35(1): 24-31. |
[22] | [Liu Haixia, Li Jinchang, Su Zhizhu, et al. The characteristics of grain size and chemical elements of the nebkha sediments in the southwestern margin of the Mu Us Sandy Land[J]. Journal of Desert Research, 2015, 35(1): 24-31.] |
[23] | 沈亚萍, 张春来, 李庆, 等. 中国东部沙区表层沉积物粒度特征[J]. 中国沙漠, 2016, 36(1): 150-157. |
[23] | [Shen Yaping, Zhang Chunlai, Li Qing, et al. Grain-size characteristics of surface sediments in the eastern desert regions of China[J]. Journal of Desert Research, 2016, 36(1): 150-157.] |
[24] | 刘倩倩, 杨小平. 毛乌素沙地和库布齐沙漠风成沙粒度参数的空间变化及其成因[J]. 中国沙漠, 2020, 40(5): 158-168. |
[24] | [Liu Qianqian, Yang Xiaoping. Spatial variations of grain size parameters of dune sands in the Mu Us Sandy land and Hobq Sand sea, northern China and its potential causes[J]. Journal of Desert Research, 2020, 40(5): 158-168.] |
[25] | 万玲玲, 董智, 李红丽, 等. 沙柳方格沙障对库布齐沙漠沙丘粒度分布的影响[J]. 干旱区资源与环境, 2013, 27(1): 165-170. |
[25] | [Wan Lingling, Dong Zhi, Li Hongli, et al. Effects of salix psammophila checkerboard sand barrier on the distribution and characteristics of sand particle size in Kubuqi Desert[J]. Journal of Arid Land Resources and Environment, 2013, 27(1): 165-170.] |
[26] | 闫敏, 左合君, 贾光普, 等. 不同防沙措施的风沙流及其携沙粒度垂直分异特征[J]. 干旱区地理, 2022, 45(5): 1513-1522. |
[26] | [Yan Min, Zuo Hejun, Jia Guangpu, et al. Vertical differentiation characteristics of wind-sand flow and its grain size under different sand control measures[J]. Arid Land Geography, 2022, 45(5): 1513-1522.] |
[27] | 邢恩德, 马少薇, 郭建英, 等. 植被盖度对典型草原区地表风沙流结构及风蚀量影响[J]. 水土保持研究, 2015, 22(6): 331-334. |
[27] | [Xing Ende, Ma Shaowei, Guo Jianying, et al. Effect of vegetation cover on sandstorm structure and rate of wind erosion in typical steppe[J]. Research of Soil and Water Conservation, 2015, 22(6): 331-334.] |
[28] | 黎小娟, 李宁, 周智彬, 等. 尼龙网方格沙障的风沙流颗粒分布特征[J]. 水土保持学报, 2016, 30(5): 128-134. |
[28] | [Li Xiaojuan, Li Ning, Zhou Zhibin, et al. Characteristic of sand flux structure and sand particle size distribution based on nylon net checkerboard barrier[J]. Journal of Soil and Water Conservation, 2016, 30(5): 128-134.] |
[29] | 张娅璐. 蒙古高原戈壁沙漠表层沉积物的理化性质及物源分析[D]. 呼和浩特: 内蒙古师范大学, 2020. |
[29] | [Zhang Yalu. Physical and chemical properties and provenance analysis of surface sediments in gobi and desert of the Mongolian Plateau[D]. Hohhot: Inner Mongolia Normal University, 2020.] |
[30] | 徐军, 郝玉光, 刘芳, 等. 乌兰布和沙漠不同下垫面风沙流结构与变异特征[J]. 水土保持研究, 2013, 20(4): 95-98. |
[30] | [Xu Jun, Hao Yuguang, Liu Fang, et al. Wind-sand flow structure and its variation under different surface conditions in the Ulanbuhe Desert[J]. Research of Soil and Water Conservation, 2013, 20(4): 95-98.] |
[31] | 赖书雅. 南阳盆地东部山区土壤铁、锰、铜和锌分布特征及其影响因素[D]. 石家庄: 河北地质大学, 2022. |
[31] | [Lai Shuya. The distribution characteristics and influencing factors of soil Fe, Mn, Cu and Zn in mountainous area of eastern Nanyang Basin[D]. Shijiazhuang: Hebei University of Geosciences, 2022.] |
[32] | Banuelos G S, Ajwa H A. Trace elements in soils and plants: An overview[J]. Journal of Environmental Science and Health, Part A, 1999, 34(4): 951-974. |
[33] | 杜德文, 石学法, 孟宪伟, 等. 黄海沉积物地球化学的粒度效应[J]. 海洋科学进展, 2003, 21(1): 78-82. |
[33] | [Du Dewen, Shi Xuefa, Meng Xianwei, et al. Geochemical granularity effect of sediment in the Yellow Sea[J]. Advances in Marine Science, 2003, 21(1): 78-82.] |
[34] | 谢远云, 孟杰, 郭令芬, 等. 哈尔滨城市道路表土记录的痕量元素在不同粒级中的分布特征[J]. 中国地质, 2013, 40(2): 629-635. |
[34] | [Xie Yuanyun, Meng Jie, Guo Lingfen, et al. The distribution of trace elements in different grain-size fractions inferred from road surface soil in Harbin City, Heilongjiang Province[J]. Geology in China, 2013, 40(2): 629-635.] |
[35] | 康丹. 西安城市公园不同粒径土壤中重金属污染研究[D]. 西安: 陕西师范大学, 2010. |
[35] | [Kang Dan. Study on heavy metal pollution in soil with different particle sizes in Xi’an Urban Park[D]. Xi’an: Shaanxi Normal University, 2010.] |
[36] | 李金婵, 陈秀玲, 贾丽敏, 等. 新疆伊犁河谷沙漠沉积不同粒径组分的地球化学元素分布特征[J]. 地球环境学报, 2014, 5(2): 102-110. |
[36] | [Li Jinchan, Chen Xiuling, Jia Limin, et al. The distribution of geochemical elements in different grain-size fractions of desert sediments in lli Valley of Xinjiang, China[J]. Journal of Earth Environment, 2014, 5(2): 102-110.] |
[37] | 闫影影. 不同放牧强度苏尼特右旗荒漠草原风沙流结构与养分特征[D]. 泰安: 山东农业大学, 2021. |
[37] | [Yan Yingying. Structure and nutrient characteristics of aeolian sand flow in desert steppe under different grazing intensities in sunite right banner[D]. Tai’an: Shandong Agricultural University, 2021.] |
/
〈 | 〉 |