Climatology and Hydrology

Mechanism and causes of a local extreme snowstorm at the northern edge of the Tarim Basin

  • Lianglu QU ,
  • Junqiang YAO ,
  • Yong ZHAO ,
  • Xueyan ZHOU
Expand
  • 1. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
    2. Institution of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China
    3. Aksu Meteorological Bureau, Aksu 843300, Xinjiang, China

Received date: 2022-08-23

  Revised date: 2022-10-21

  Online published: 2023-06-05

Abstract

On April 2, 2021, a catastrophic snowstorm, which exceeded the historical extreme value, occurred, causing large financial losses in Baicheng County, the northern edge of the Tarim Basin, Xinjiang, China. The hourly European Center for Medium-Range Weather Forecasts fifth-generation (ERA5) high-resolution reanalysis data (0.25º×0.25º), meteorological observation data, and FY-2G satellite data were used to fully analyze the atmospheric circulation anomalies, multi-scale atmospheric circulation characteristics, and physical mechanisms. The following results were obtained: (1) The atmospheric circulation of the snowstorm was typical of a South Xinjiang snowstorm circulation: upper-level South Asian high, subtropical trough, and subtropical westerly jet, mid-level Central Asian vortex, and low-level easterly jet and converging lines combined with the cold high pressure and converging lines at the surface. (2) Extreme snowstorm was caused by the interplay of different-scale atmospheric circulation anomalies. The upper-level anomalies of Iran subtropical high and anomalous easterly airflow at low latitudes led to the anomalous combination of the Central Asian vortex and the plateau vortex at 500 hPa and also generated anomalous easterly airflow at 700 hPa, guiding warm and humid air from the South China Sea and the Bay of Bengal along the Hexi Corridor to the central Tarim Basin, causing water vapor convergence and enhancing vertical upward movement, with the triggering of the surface convergence line, resulting in an extreme snowstorm. A stable maintenance of surface high-pressure systems and cold front produce continuous cooling in the Tarim Basin. Moreover, Baicheng County is located in a shallow mountainous area with an altitude above 1000 m, and the combination produced extreme snowstorm in April. (3) For Baicheng County, the key roles are the upward motion in the middle layer of the troposphere and the vertical wind shear at 300-500 hPa. The vertical profile shows that the level of upward motion of the snowstorm is located at 500-700 hPa, showing mesoscale symmetric instability characteristics. Using the frontogenetic function equation and the moist potential vorticity equation, we found that the intensity of the vertical potential temperature gradient and westerly wind anomalies lead to the development of baroclinic instability, causing surface frontogenesis, generating 300 hPa and surface moist potential vorticity anomalies, affecting the development of snowstorm through upward motion changes. (4) The consistency of the moving and propagation directions determines the evolutionary characteristics of mesoscale clouds production and extinction. In turn, the continuous development of mesoscale clouds moving northeastward through Baicheng County increases the duration and intensity of the snowstorm. The above findings can deepen the knowledge of extreme snowstorms in the Tarim Basin and provide scientific support for accurate forecasting and precise services.

Cite this article

Lianglu QU , Junqiang YAO , Yong ZHAO , Xueyan ZHOU . Mechanism and causes of a local extreme snowstorm at the northern edge of the Tarim Basin[J]. Arid Land Geography, 2023 , 46(5) : 719 -729 . DOI: 10.12118/j.issn.1000-6060.2022.411

References

[1] 王凌, 高歌, 张强, 等. 2008年1月我国大范围低温雨雪冰冻灾害分析Ⅰ: 气候特征与影响评估[J]. 气象, 2008, 34(4): 95-100.
[1] [Wang Ling, Gao Ge, Zhang Qiang, et al. Analysis of the severe cold surge, ice-snow and frozen disaster in south China during January 2008 Ⅰ: Climate features and its impact[J]. Meteorological Monthly, 2008, 34(4): 95-100. ]
[2] 郝璐, 王静爱, 满苏尔, 等. 中国雪灾时空变化及畜牧业脆弱性分析[J]. 自然灾害学报, 2002, 11(4): 42-48.
[2] [Hao Lu, Wang Jing’ai, Mansuer, et al. Spatial-temporal change of snow disaster and analysis of vulnerability of animal husbandry in China[J]. Journal of Natural Disasters, 2002, 11(4): 42-48. ]
[3] 刘玉莲, 任国玉, 于宏敏. 中国降雪气候学特征[J]. 地理科学, 2012, 32(10): 1176-1185.
[3] [Liu Yulian, Ren Guoyu, Yu Hongmin. Climatology of snow in China[J]. Scientia Geographica Sinica, 2012, 32(10): 1176-1185. ]
[4] 杨莲梅, 刘雯. 新疆北部持续性暴雪过程成因分析[J]. 高原气象, 2016, 35(2): 507-519.
[4] [Yang Lianmei, Liu Wen. Cause analysis of persistent heavy snow processes in the northern Xinjiang[J]. Plateau Meteorology, 2016, 35(2): 507-519. ]
[5] 高松影, 赵婷婷, 宋丽丽, 等. 辽宁省冬季区域暴雪水汽输送特征[J]. 冰川冻土, 2020, 42(2): 439-446.
[5] [Gao Songying, Zhao Tingting, Song Lili, et al. Transporting characteristics of snowstorm water vapor over Liaoning Province in winter[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 439-446. ]
[6] 冯丽莎, 宋攀, 郑飞, 等. 2016年初冬河南区域暴雪过程诊断分析[J]. 大气科学, 2020, 44(1): 13-26.
[6] [Feng Lisha, Song Pan, Zheng Fei, et al. Diagnostic analysis of a severe regional snowstorm event in the early winter of 2016 in Henan Province, China[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(1): 13-26. ]
[7] 张俊兰, 施俊杰, 李伟, 等. 乌鲁木齐暴雪天气的环流配置及中尺度系统特征[J]. 沙漠与绿洲气象, 2021, 15(1): 1-8.
[7] [Zhang Junlan, Shi Junjie, Li Wei, et al. Atmospheric circulation and meso-scale system characteristics of snowstorm in Urumqi[J]. Desert and Oasis Meteorology, 2021, 15(1): 1-8. ]
[8] 范俊红, 易笑园. 大范围持续暴雪过程中多种影响系统的对比分析[J]. 气象学报, 2019, 77(6): 965-979.
[8] [Fan Junhong, Yi Xiaoyuan. Comparative analysis of several influencing systems in the process of a large-scale continuous snowstorm[J]. Acta Meteorologica Sinica, 2019, 77(6): 965-979. ]
[9] 李兆慧, 王东海, 王建捷, 等. 一次暴雪过程的锋生函数和急流—锋面次级环流分析[J]. 高原气象, 2011, 30(6): 1505-1515.
[9] [Li Zhaohui, Wang Donghai, Wang Jianjie, et al. Analysis on frontogenesis function and jet-front secondary circulation in a snowstorm process[J]. Plateau Meteorology, 2011, 30(6): 1505-1515. ]
[10] 李娜, 李如琦, 秦贺, 等. 2018年10月乌鲁木齐暴雪过程锋面分析[J]. 沙漠与绿洲气象, 2020, 14(5): 36-43.
[10] [Li Na, Li Ruqi, Qin He, et al. Frontal characteristics of the snowstorm process in Urumqi in October 2018[J]. Desert and Oasis Meteorology, 2020, 14(5): 36-43. ]
[11] 姜有山, 束宇, 李力, 等. 基于湿位涡和积雪效率的降雪预报技术探讨[J]. 气象科学, 2017, 37(5): 659-665.
[11] [Jiang Youshan, Shu Yu, et al. Investigation on snowfall forecasting skills based on moist potential vorticity and efficiency of snow accumulation[J]. Journal of the Meteorological Sciences, 2017, 37(5): 659-665. ]
[12] 李如琦, 唐冶, 路光辉, 等. 北疆暴雪过程的湿位涡诊断[J]. 沙漠与绿洲气象, 2013, 7(5): 1-6.
[12] [Li Ruqi, Tang Ye, Lu Guanghui, et al. Diagnosis of moist potential vorticity of a snowstorm process in northern Xinjiang[J]. Desert and Oasis Meteorology, 2013, 7(5): 1-6. ]
[13] 黄晓璐, 林弘杰, 李一平, 等. 2020年初内蒙古一次暴雪天气过程的成因分析[J]. 沙漠与绿洲气象, 2021, 15(6): 18-25.
[13] [Huang Xiaolu, Lin Hongjie, Li Yiping, et al. Causes of the snowstorm event in the early winter of 2020 in Inner Mongolia[J]. Desert and Oasis Meteorology, 2021, 15(6): 18-25. ]
[14] 姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346.
[14] [Yao Junqiang, Li Moyan, Tuoliewubieke Dilinuer, et al. The assessment on “warming-wetting” trend in Xinjiang at multi-scale during 1961—2019[J]. Arid Zone Research, 2022, 39(2): 333-346. ]
[15] 李双双, 张杰, 陈志恒. 中亚地区冬季极端降雪增加与北大西洋两类海温模态增强的联系[J]. 高原气象, 2022, 41(5): 1124-1140.
[15] [Li Shuangshuang, Zhang Jie, Chen Zhiheng. The relationship between the increase of extreme snowfall in winter of Central Asia and the enhancement of two SST modes in the North Atlantic[J]. Plateau Meteorology, 2022, 41(5): 1124-1140. ]
[16] 杨霞, 周鸿奎, 许婷婷, 等. 南疆夏季不同类型暴雨精细化特征对比分析[J]. 干旱区研究, 2021, 38(3): 747-756.
[16] [Yang Xia, Zhou Hongkui, Xu Tingting. Comparative analysis of the fine characteristics of different rainstorms in southern Xinjiang during summer[J]. Arid Zone Research, 2021, 38(3): 747-756. ]
[17] 施俊杰, 孙鸣婧, 吕新生, 等. 南疆西部春季一次极端暴雪天气综合分析[J]. 干旱区地理, 2022, 45(1): 131-140.
[17] [Shi Junjie, Sun Mingjing, Lü Xinsheng, et al. Comprehensively analysis of an extreme snowstorm in the west of southern Xinjiang in spring[J]. Arid Land Geography, 2022, 45(1): 131-140. ]
[18] 杨涛, 杨莲梅, 周鸿奎, 等. 新疆北部小时降雪特征及大暴雪天气影响系统研究[J]. 干旱区地理, 2022, 45(3): 725-733.
[18] [Yang Tao, Yang Lianmei, Zhou Hongkui, et al. Hourly snowfall characteristics and influence system of heavy snowstorm in northern Xinjiang[J]. Arid Land Geography, 2022, 45(3): 725-733. ]
[19] 杨霞, 李阿桥, 赵逸舟, 等. 1961—2018年新疆北部冬季暴雪时空分布及其环流特征[J]. 冰川冻土, 2020, 42(3): 756-765.
[19] [Yang Xia, Li Aqiao, Zhao Yizhou, et al. Spatial-temporal distribution and general circulation of snowstorm in northern Xinjiang from 1961 to 2018[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 756-765. ]
[20] 张家宝, 邓子风. 新疆降水概论[M]. 北京: 气象出版社, 1987.
[20] [Zhang Jiabao, Deng Zifeng. Introduction of precipitation in Xinjiang[M]. Beijing: China Meteorological Press, 1987. ]
[21] 毛炜峄, 南庆红, 史红政. 新疆气候变化特征及气候分区方法研究[J]. 气象, 2008, 34(10): 67-73.
[21] [Mao Weiyi, Nan Qinghong, Shi Hongzheng. Research of climatic regionalization with climate change in Xinjiang[J]. Meteorological Monthly, 2008, 34(10): 67-73. ]
[22] 杨霞, 张云惠, 赵逸舟, 等. 南疆西部一次罕见大暴雪过程分析[J]. 高原气象, 2015, 34(5): 1414-1423.
[22] [Yang Xia, Zhang Yunhui, Zhao Yizhou, et al. Analysis on rare snowstorm in west of southern Xinjiang[J]. Plateau Meteorology, 2015, 34(5): 1414-1423. ]
[23] 于碧馨, 洪月, 张云惠, 等. 天山两麓一次极端暴雪天气多尺度配置及机制分析[J]. 沙漠与绿洲气象, 2020, 14(5): 11-18.
[23] [Yu Bixin, Hong Yue, Zhang Yunhui, et al. Multiscale configuration characteristics and mechanism of an extreme snowstorm over the stride of Tianshan Mountains[J]. Desert and Oasis Meteorology, 2020, 14(5): 11-18. ]
[24] 张云惠, 于碧馨, 谭艳梅, 等. 2011年两次中亚低涡影响南疆西部降雪机制分析[J]. 高原气象, 2016, 35(5): 1307-1316.
[24] [Zhang Yunhui, Yu Bixin, Tan Yanmei, et al. Influence mechanism analysis of snow caused by two Central Asian vortexes in west southern Xinjiang in 2011[J]. Plateau Meteorology, 2016, 35(5): 1307-1316. ]
[25] 陈春艳, 秦贺, 唐冶, 等. 2012年3月新疆大范围暴雨雪天气诊断分析[J]. 沙漠与绿洲气象, 2014, 8(2): 12-18.
[25] [Chen Chunyan, Qin He, Tang Ye, et al. Diagnosis analystic of wide-range rainstorm and snowstorm occurred in Xinjiang in March 2012[J]. Desert and Oasis Meteorology, 2014, 8(2): 12-18. ]
[26] 郑红莲, 严军, 元慧慧. 南疆地区近58年气温、降水变化特征分析[J]. 干旱区资源与环境, 2010, 24(7): 103-109.
[26] [Zheng Honglian, Yan Jun, Yuan Huihui. Analysis of temperature and precipitation of southern Xinjiang in last 58 years[J]. Journal of Arid Land Resources and Environment, 2010, 24(7): 103-109. ]
[27] Hans H, Bill B, Paul B, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049.
[28] 吴国雄, 蔡雅萍, 唐晓菁. 湿位涡和倾斜涡度发展[J]. 气象学报, 1995(4): 387-405.
[28] [Wu Guoxiong, Cai Yaping, Tang Xiaojing. Wet potential vortex and tilt vorticity development[J]. Acta Meteorologica Sinica, 1995(4): 387-405. ]
[29] 段旭, 段玮, 张亚男, 等. 利用锋生函数对2008年年初昆明准静止锋生消过程的诊断分析[J]. 大气科学, 2019, 43(2): 325-338.
[29] [Duan Xu, Duan Wei, Zhang Ya’nan, et al. Diagnostic analysis of frontogenesis and frontolysis of Kunming quasi-stationary front in early 2008 based on frontogenesis function[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(2): 325-338. ]
Outlines

/