Preliminary observations study of physical structures of two types of fog in Liupan Mountain areas
Received date: 2022-08-03
Revised date: 2022-08-29
Online published: 2023-04-28
Based on the routine observation data of ground visibility, temperature, relative humidity, wind and other meteorological stations in Longde, Jingyuan and Liupan Mountain Meteorological Station obtained from the observation of mountain fog in Liupan Mountain, northwest China in 2020, and the vertical observation data of microwave radiometer temperature and relative humidity, the circulation situation and the vertical evolution characteristics of temperature and humidity in Liupan Mountain were preliminarily analyzed when the fog occurred in a large range and only at the top of the mountain. The results show that both the large-scale fog process and the mountaintop fog process in Liupan Mountain areas are caused by the warm and humid air flow in front of the trough and the cooling and humidification. The relative humidity on the ground during the two types of fog is more than 95%, mainly southerly winds. The visibility of Longde and Jingyuan Meteorological Stations is more than 200 m, and the visibility of Liupan Mountain Meteorological Station is less than 200 m for more than half of the time; The fog at Liupan Mountain is generated and dissipated rapidly, and the strong fog lasts for a long time. The thickness of inversion layer thickens earlier than the time of strong fog, when the fog is mature, the thickness of the inversion layer reaches 1130 m, with the development of fog, the thickness of inversion layer at Longde Meteorological Station has also increased, but it is far less than that at Liupan Mountain Meteorological Station, and the intensity of inversion at Liupan Mountain Meteorological Station is weaker than that at Longde Meteorological Station. With the development of fog, the relative humidity has an obvious upward extension phenomenon, with more than 90% of the relative humidity extending to 1040 m, at the same time, the microwave radiometer of Longde Meteorological Station can observe a saturated area of about 600 m when there is strong fog at Liupan Mountain Meteorological Station, which is of great significance to analyze the vertical evolution of typical mountain fog in Liupan Mountain.
Key words: fog; physical structures; preliminary observations; Liupan Mountain area
Zhangli DANG , Jianhua MU , Jun YAN , Ning CAO , Zhuolin CHANG . Preliminary observations study of physical structures of two types of fog in Liupan Mountain areas[J]. Arid Land Geography, 2023 , 46(4) : 574 -582 . DOI: 10.12118/j.issn.1000-6060.2022.382
[1] | 李子华. 中国近40年来雾的研究[J]. 气象学报, 2001, 59(5): 616-624. |
[1] | [Li Zihua. Studies of fog in China over the past 40 years[J]. Acta Meteorologica Sinica, 2001, 59(5): 616-624.] |
[2] | Niu S J, Lu C S, Yu H Y, et al. Fog research in China: An overview[J]. Advances in Atmospheric Sciences, 2010, 27(3): 639-661. |
[3] | 刘小宁, 张洪政, 李庆祥, 等. 我国大雾的气候特征及变化初步解释[J]. 应用气象学报, 2005, 16(2): 220-230. |
[3] | [Liu Xiaoning, Zhang Hongzheng, Li Qingxiang, et al. Preliminary research on the climatic characteristics and change of fog in China[J]. Journal of Applied Meteorological Science, 2005, 16(2): 220-230.] |
[4] | Niu S J, Lu C S, Liu Y G, et al. Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study[J]. Advances in Atmospheric Sciences, 2010, 27(6): 1259-1275. |
[5] | 何立富, 陈涛, 毛卫星. 华北平原一次持续性大雾过程的成因分析[J]. 热带气象学报, 2006, 22(4): 340-350. |
[5] | [He Lifu, Chen Tao, Mao Weixing. The formation of a sustained heavy fog event in North Plain[J]. Journal of Tropical Meteorology, 2006, 22(4): 340-350.] |
[6] | 郭丽君, 郭学良. 利用地基多通道微波辐射计遥感反演华北持续性大雾天气温、湿度廓线的检验研究[J]. 气象学报, 2015, 73(2): 368-381. |
[6] | [Guo Lijun, Guo Xueliang. Verification study of the atmospheric temperature and humidity profiles retrieved from the ground-based multi-channels microwave radiometer for persistent foggy weather events in northern China[J]. Acta Meteorologica Sinica, 2015, 73(2): 368-381.] |
[7] | 郭丽君, 郭学良. 北京2009—2013年期间持续性大雾的类型、垂直结构及物理成因[J]. 大气科学, 2016, 40(2): 296-310. |
[7] | [Guo Lijun, Guo Xueliang. Vertical structure and physical formation mechanism of persistent heavy fog events during 2019—2013 in the Beijing region[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(2): 296-310.] |
[8] | 马禹, 任宜勇, 陈春艳, 等. 40年来新疆雾的演变特征及大雾天气过程分析[J]. 干旱区地理, 2005, 28(4): 474-478. |
[8] | [Ma Yu, Ren Yiyong, Chen Chunyan, et al. Change characteristic of fog and analysis on weather process of heavy fog in Xinjiang in nearly 40 years[J]. Arid Land Geography, 2005, 28(4): 474-478.] |
[9] | 李艳春, 李艳芳, 高娜, 等. 银川市雾霾天气的气象条件分析及概念模型建立[J]. 干旱区地理, 2017, 40(6): 1127-1133. |
[9] | [Li Yanchun, Li Yanfang, Gao Na, et al. Meteorological conditions analysis and conceptual model establishment of fog and haze days in Yinchuan City[J]. Arid Land Geography, 2017, 40(6): 1127-1133.] |
[10] | 郑玉萍, 李景林. 乌鲁木齐近31年大雾天气气候特征分析[J]. 气象, 2008, 34(8): 22-28. |
[10] | [Zheng Yuping, Li Jinglin. A study of the climatic characteristics of heavy fog in Urumqi in recent 31 years[J]. Meteorological Monthly, 2008, 34(8): 22-28.] |
[11] | 陆春松, 牛生杰, 岳平, 等. 南京冬季雾多发期边界层结构观测分析[J]. 大气科学学报, 2011, 34(1): 58-65. |
[11] | [Lu Chunsong, Niu Shengjie, Yue Ping, et al. Observation research on boundary layer structure during high incidence period of winter fog in Nanjing[J]. Transaction of Atmospheric Sciences, 2011, 34(1): 58-65.] |
[12] | 于华英, 牛生杰, 刘鹏, 等. 2007年12月南京六次雨雾过程宏、微观结构演变特征[J]. 大气科学, 2015, 39(1): 47-58. |
[12] | [Yu Huaying, Niu Shengjie, Liu Peng, et al. Evolution of the macro-and microphysical properties of precipitation fog in December 2007 in Nanjing[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 47-58.] |
[13] | 吕晶晶, 牛生杰, 张羽, 等. 湛江东海岛一次春季海雾的宏微观结构及边界层演变特征[J]. 气象学报, 2014, 72(2): 350-365. |
[13] | [Lü Jingjing, Niu Shengjie, Zhang Yu, et al. Evolution characteristics of the macro-/micro-structure and the bundary layer during a spring heavy sea fog episode in Donghai Island in Zhanjiang[J]. Acta Meteorologica Sinica, 2014, 72(2): 350-365.] |
[14] | 吕晶晶, 牛生杰, 赵丽娟, 等. 湛江地区一次冷锋型海雾微物理特征[J]. 大气科学学报, 2014, 37(2): 208-215. |
[14] | [Lü Jingjing, Niu Shengjie, Zhao Lijuan, et al. Microphysical characteristics of a sea fog influenced by a cold front in Zhanjiang[J]. Transactions of Atmospheric Sciences, 2014, 37(2): 208-215.] |
[15] | Stekl J, Podzimck J. Old mountain meteorological station Milesovka (Donnersberg) in Central Europe[J]. Bulletin of American Meteorological, 1993, 74(5): 831-834. |
[16] | 郭丽君, 郭学良, 楼小凤, 等. 庐山云雾及降水的日、季节变化和宏微观物理特征观测研究[J]. 气象学报, 2019, 77(5): 923-937. |
[16] | [Guo Lijun, Guo Xueliang, Lou Xiaofeng, et al. An observational study of diurnal and seasonal variations and microphysical properties of clouds and precipitation over Mount Lu, Jiangxi, China[J]. Acta Meteoralogica Sinica, 2019, 77(5): 923-937.] |
[17] | 费冬冬, 牛生杰, 杨军, 等. 长江中上游冬季山地雾边界层特征及生消过程分析[J]. 大气科学学报, 2016, 39(2): 221-231. |
[17] | [Fei Dongdong, Niu Shengjie, Yang Jun, et al. Boundary layer characteristics and formation processes of winter valley fog in the upper and middle reaches of the Yangtze River[J]. Transaction of Atmospheric Sciences, 2016, 39(2): 221-231.] |
[18] | 邓雪娇, 吴兑, 唐浩华, 等. 南岭山地一次锋面浓雾过程的边界层结构分析[J]. 高原气象, 2007, 26(4): 881-889. |
[18] | [Deng Xuejiao, Wu Dui, Tang Haohua, et al. Analyses on boundary layer structure of a frontal heavy fog process in Nanling Mountain area[J]. Plateau Meteorology, 2007, 26(4): 881-889.] |
[19] | 尤红, 杨明, 郭荣芬, 等. 云南昆洛高速峨山段典型山地雾的诊断分析[J]. 气象, 2008, 34(8): 87-94. |
[19] | [You Hong, Yang Ming, Guo Rongfen, et al. Diagnostic analysis of typical mountainous fog process in Eshan along Kunming-Daluo high way in Yunnan[J]. Meteorological Monthly, 2008, 34(8): 87-94.] |
[20] | 张沛, 姚展予, 贾烁, 等. 六盘山地区空中云水资源特征及水凝物降水效率研究[J]. 大气科学, 2020, 44(2): 421-434. |
[20] | [Zhang Pei, Yao Zhanyu, Jia Shuo, et al. Study of the characteristics of atmospheric water resources and hydrometeor precipitaion efficiency over the Liupan Shan area[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(2): 421-434.] |
/
〈 |
|
〉 |