Climatology and Hydrology

Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau

  • Taotao REN ,
  • Shuangshuang LI ,
  • Keqin DUAN ,
  • Jinping HE
Expand
  • School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, Shaanxi, China

Received date: 2022-06-22

  Revised date: 2022-08-23

  Online published: 2023-03-31

Abstract

Flash drought is a type of drought characterized by rapid intensification. In the context of global warming, flash droughts are increasingly frequent, which has had a devastating impact on the agricultural ecosystem and public health of China. Understanding the spatiotemporal variation characteristics and influencing factors of flash drought events is of critical importance for monitoring, early warning, and loss prevention. On the basis of ERA5-Land data from 1981 to 2020, this study examined the spatiotemporal variation of two types of flash drought (heat wave and precipitation deficit flash drought) in the Loess Plateau using trend and correlation analyses. The relationship between the different atmosphere-ocean oscillation indices and the number of flash drought is also examined. The following results are presented. (1) The frequency of the two types of flash drought increased significantly from 1981 to 2020, with a higher increasing precipitation deficit rate [0.54 penta·(10a)-1] than that of heat wave [0.46 penta·(10a)-1] flash drought. Particularly, the two types of flash drought had a similar pattern in decadal variation. Before 1998, the two types of flash drought primarily displayed low fluctuation. From 1998 to 2010, the number of flash droughts rapidly increased. The growth rate of flash droughts stalled and began to decline after 2010. (2) A spatially significant (P<0.05) upward trend for heat wave (precipitation deficit) flash drought was observed in 36.5% (37.5%) of the Loess Plateau. The parts of the Loess Plateau with gullies and hills, as well as the eastern Hetao Plain and the Fenwei River Valley Plain, had a marked increase in the incidence of heat waves and precipitation deficit flash droughts. (3) Considering the influencing factors, the trend and interannual oscillations of flash drought in the Loess Plateau can be explained by the sea surface temperature (SST) anomaly in the NINO B region and the atmospheric pressure anomaly in the northern Qinghai-Tibet Plateau. The Loess Plateau had an increase in the probability of flash drought due to positive air pressure anomalies in the northern Qinghai-Tibet Plateau and large SST anomalies in the central equatorial India Ocean.

Cite this article

Taotao REN , Shuangshuang LI , Keqin DUAN , Jinping HE . Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau[J]. Arid Land Geography, 2023 , 46(3) : 360 -370 . DOI: 10.12118/j.issn.1000-6060.2022.307

References

[1] 王文静, 延军平, 刘永林, 等. 基于综合气象干旱指数的海河流域干旱特征分析[J]. 干旱区地理, 2016, 39(2): 336-344.
[1] [ Wang Wenjing, Yan Junping, Liu Yonglin, et al. Characteristics of droughts in the Haihe Basin based on meteorological drought composite index[J]. Arid Land Geography, 2016, 39(2): 336-344. ]
[2] 张世喆, 朱秀芳, 刘婷婷, 等. 基于多维Copula的中国干旱特征及危险性分析[J]. 干旱区地理, 2022, 45(2): 333-345.
[2] [ Zhang Shizhe, Zhu Xiufang, Liu Tingting, et al. Drought characteristics and risk hazard in China based on multidimensional Copula model[J]. Arid Land Geography, 2022, 45(2): 333-345. ]
[3] Zhang Y, Liu X H, Jiao W Z, et al. A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China[J]. Agricultural Water Management, 2022, 265(C): 107544, doi: 10.1016/j.agat.2022.107544.
[4] 袁星, 王钰淼, 张苗, 等. 关于骤旱研究的一些思考[J]. 大气科学学报, 2020, 43(6): 1086-1095.
[4] [ Yuan Xing, Wang Yumiao, Zhang Miao, et al. A few thoughts on the study of flash drought[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1086-1095. ]
[5] Qing Y M, Wang S, Ancell B C, et al. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity[J]. Nature Communications, 2022, 13(1): 1-10.
[6] Christian J I, Basara J B, Hunt E D, et al. Global distribution, trends, and drivers of flash drought occurrence[J]. Nature Communications, 2021, 12(1): 1-11.
[7] Ford T W, Labosier C F. Meteorological conditions associated with the onset of flash drought in the eastern United States[J]. Agricultural and Forest Meteorology, 2017, 247: 414-423.
[8] Wang L Y, Yuan X, Xie Z H, et al. Increasing flash droughts over China during the recent global warming hiatus[J]. Scientific Reports, 2016, 6(1): 1-8.
[9] Otkin J A, Anderson M C, Hain C, et al. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought[J]. Agricultural and Forest Meteorology, 2016, 218: 230-242.
[10] Nguyen H, Wheeler M C, Otkin J A, et al. Using the evaporative stress index to monitor flash drought in Australia[J]. Environmental Research Letters, 2019, 14(6): 064016, doi: 10.1088/1748-9326/ab2103.
[11] Mahto S S, Mishra V. Dominance of summer monsoon flash droughts in India[J]. Environmental Research Letters, 2020, 15(10): 104061, doi: 10.1088/1748-9326/abaf1d.
[12] Yuan X, Ma Z, Pan M, et al. Microwave remote sensing of short-term droughts during crop growing seasons[J]. Geophysical Research Letters, 2015, 42(11): 4394-4401.
[13] Mo K C, Lettenmaier D P. Heat wave flash droughts in decline[J]. Geophysical Research Letters, 2015, 42(8): 2823-2829.
[14] Mo K C, Lettenmaier D P. Precipitation deficit flash droughts over the United States[J]. Journal of Hydrometeorology, 2016, 17(4): 1169-1184.
[15] Christian J I, Basara J B, Otkin J A, et al. A methodology for flash drought identification: Application of flash drought frequency across the United States[J]. Journal of Hydrometeorology, 2019, 20(5): 833-846.
[16] Zhang Y Q, You Q L, Chen C C, et al. Evaluation of downscaled CMIP5 coupled with VIC model for flash drought simulation in a humid subtropical basin, China[J]. Journal of Climate, 2018, 31(3): 1075-1090.
[17] Zhang H Y, Wu C H, Yeh P J F, et al. Global pattern of short-term concurrent hot and dry extremes and its relationship to large-scale climate indices[J]. International Journal of Climatology, 2020, 40(14): 5906-5924.
[18] Zhang H Y, Wu C H, Hu B X. Recent intensification of short-term concurrent hot and dry extremes over the Pearl River Basin, China[J]. International Journal of Climatology, 2019, 39(13): 4924-4937.
[19] 徐华, 徐建军, 范伶俐. ENSO多样性研究进展[J]. 热带气象学报, 2019, 35(2): 281-288.
[19] [ Xu Hua, Xu Jianjun, Fan Lingli. ENSO diversity: A review[J]. Journal of Tropical Meteorology, 2019, 35(2): 281-288. ]
[20] 王婷, 李双双, 延军平, 等. 基于ENSO发展过程的中国夏季降水时空变化特征[J]. 自然资源学报, 2022, 37(3): 803-815.
[20] [ Wang Ting, Li Shuangshuang, Yan Junping, et al. Spatio-temporal variation of summer precipitation in China based on ENSO development process[J]. Journal of Natural Resources, 2022, 37(3): 803-815. ]
[21] 吉珍霞, 侯青青, 裴婷婷, 等. 黄土高原植被物候对季节性干旱的敏感性响应[J]. 干旱区地理, 2022, 45(2): 557-565.
[21] [ Ji Zhenxia, Hou Qingqing, Pei Tingting, et al. Sensitive response of vegetation phenology to seasonal drought in the Loess Plateau[J]. Arid Land Geography, 2022, 45(2): 557-565. ]
[22] Wang L Y, Yuan X. Two types of flash drought and their connections with seasonal drought[J]. Advances in Atmospheric Sciences, 2018, 35(12): 1478-1490.
[23] He M Z, Kimball J S, Yi Y, et al. Impacts of the 2017 flash drought in the US northern plains informed by satellite-based evapotranspiration and solar-induced fluorescence[J]. Environmental Research Letters, 2019, 14(7): 074019, doi: 10.1088/1748-9326/ab22c3.
[24] 胡鹏飞, 李净, 王丹, 等. 基于MODIS和TRMM数据的黄土高原农业干旱监测[J]. 干旱区地理, 2019, 42(1): 172-179.
[24] [ Hu Pengfei, Li Jing, Wang Dan, et al. Monitoring agricultural drought in the Loess Plateau using MODIS and TRMM data[J]. Arid Land Geography, 2019, 42(1): 172-179. ]
[25] 杨艳芬, 王兵, 王国梁, 等. 黄土高原生态分区及概况[J]. 生态学报, 2019, 39(20): 7389-7397.
[25] [ Yang Yanfen, Wang Bing, Wang Guoliang, et al. Ecological regionalization and overview of the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(20): 7389-7397. ]
[26] 岳书平, 闫业超, 张树文, 等. 基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J]. 地理学报, 2021, 76(11): 2765-2779.
[26] [ Yue Shuping, Yan Yechao, Zhang Shuwen, et al. Spatiotemporal variations of soil freeze-thaw state in northeast China based on the ERA5-LAND dataset[J]. Acta Geographica Sinica, 2021, 76(11): 2765-2779. ]
[27] 安彬, 肖薇薇, 张淑兰, 等. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785.
[27] [ An Bin, Xiao Weiwei, Zhang Shulan, et al. Spatial and temporal characteristics of surface temperature in the Loess Plateau during 1961—2017[J]. Arid Land Geography, 2021, 44(3): 778-785. ]
[28] 贾丹阳, 熊祯祯, 高岩, 等. 近30 a台特玛湖地区土地利用/土地覆被变化及其影响因素[J]. 干旱区地理, 2021, 44(4): 1022-1031.
[28] [ Jia Danyang, Xiong Zhenzhen, Gao Yan, et al. Land use/land cover change and influencing factors in the Taitema Lake in the past 30 years[J]. Arid Land Geography, 2021, 44(4): 1022-1031. ]
[29] 杨凯, 胡田田, 王澄海. 青藏高原南、北积雪异常与中国东部夏季降水关系的数值试验研究[J]. 大气科学, 2017, 41(2): 345-356.
[29] [ Yang Kai, Hu Tiantian, Wang Chenghai. A numerical study on the relationship between the spring-winter snow cover anomalies over the northern and southern Tibetan Plateau and summer precipitation in east China[J]. Atmospheric Sciences, 2017, 41(2): 345-356. ]
[30] 朱玉祥, 丁一汇, 刘海文. 青藏高原冬季积雪影响我国夏季降水的模拟研究[J]. 大气科学, 2009, 33(5): 903-915.
[30] [ Zhu Yuxiang, Ding Yihui, Liu Haiwen, et al. Simulation of the influence of winter snow depth over the Tibetan Plateau on summer rainfall in China[J]. Atmospheric Sciences, 2009, 33(5): 903-915. ]
Outlines

/