Characteristics of groundwater in Ebinur Lake Basin using isotopes method
Received date: 2022-05-18
Revised date: 2022-06-14
Online published: 2023-03-14
Groundwater is important for regulating the water cycle and ecosystem in arid areas. Understanding and managing groundwater resources is the key to preventing the reduction of river baseflow, ground subsidence and water quality degradation. Therefore, this study analyzed the groundwater chemical parameters and hydrogen-oxygen stable isotope characteristics of the Ebinur Lake Basin, Xinjiang, China, and explored the sources of groundwater recharge, dynamic changes of water chemical components in different regions by combining linear regression, two-terminal mixed model and GIS spatial analysis. The results showed that: (1) Different circulation processes of groundwater existed in different areas of the Ebinur Lake Basin, with the largest of hydrogen and oxygen isotopes (δ2H and δ18O) in the middle and lower reaches of the Bortala and Jing Rivers, followed by the area around Lake Ebinur Basin, and the smallest in the upper Bortala River area. (2) Deuterium excess parameter (d-excess) parameter and hydrochemical composition of groundwater reflected different groundwater recharge mechanisms and influencing factors. Groundwater in the upper Bortala River area was mainly recharged by glacial snow melt water. The main sources of groundwater in the middle and lower reaches of the Bortala and Jing Rivers were surface water and precipitation, which were also greatly influenced by the nature of rock formations, farmland development and irrigation measures. Groundwater around Lake Ebinur Basin mainly came from snow and ice melt and precipitation. The middle and lower reaches and groundwater in the river and lake confluence areas are the key areas for pollution prevention and control and management. (3) Different hydraulic connections existed in underground aquifers. The electrical conductance (EC) of flow system I ranged from 210.00 μS·cm-1 to 2500.00 μS·cm-1, and the d-excess ranged from 6.47‰ to 9.70‰. The EC of flow system II ranged from 141.60 μS·cm-1 to 5260.00 μS·cm-1, and the d-excess ranged from 9.61‰ to 17.45‰. In conclusion, this study investigated the driving mechanisms of hydrogen and oxygen isotopes and water chemistry in groundwater in the Lake Ebinur Basin, which provided some theoretical reference for the rational use and scientific development of groundwater resources in the basin.
Jingming LIU , Jianli DING , Qingling BAO , Zipeng ZHANG , Leipeng JIANG , Yi QU . Characteristics of groundwater in Ebinur Lake Basin using isotopes method[J]. Arid Land Geography, 2023 , 46(2) : 201 -210 . DOI: 10.12118/j.issn.1000-6060.2022.228
[1] | Dandge K, Patil S. Spatial distribution of ground water quality index using remote sensing and GIS techniques[J]. Applied Water Science, 2022, 12(1): 1-18. |
[2] | Ma F, Chen J, Chen J, et al. Hydrogeochemical and isotopic evidences of unique groundwater recharge patterns in the Mongolian Plateau[J]. Hydrological Processes, 2022: e14554, doi: 10.1002/hyp.14554. |
[3] | 顾慰祖, 庞忠和, 王全九, 等. 同位素水文学[M]. 北京: 科学出版社, 2011: 1-1113. |
[3] | [Gu Weizu, Pang Zhonghe, Wang Quanjiu, et al. Isotopic hydrology[M]. Beijing: Science Press, 2011: 1-1113.] |
[4] | Krajcar Broni? I, Bare?i? J. Application of stable isotopes and Tritium in hydrology[J]. Water, 2021, 13(4): 430, doi: 10.3390/w13040430. |
[5] | 赵春, 张勇勇, 赵文智, 等. 稳定同位素在干旱区水分传输过程的研究进展[J]. 生态科学, 2020, 39(5): 256-264. |
[5] | [Zhao Chun, Zhang Yongyong, Zhao Wenzhi, et al. Application of stable isotopes on water exchange in the arid region: A review[J]. Ecological Science, 2020, 39(5): 256-264.] |
[6] | Yapiyev V, Skrzypek G, Verhoef A, et al. Between boreal Siberia and arid Central Asia: Stable isotope hydrology and water budget of Burabay National Nature Park ecotone (Northern Kazakhstan)[J]. Journal of Hydrology: Regional Studies, 2020, 27: 100644, doi: 10.1016/j.ejrh.2019.100644. |
[7] | Joshi S K, Rai S P, Sinha R, et al. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H)[J]. Journal of Hydrology, 2018, 559: 835-847. |
[8] | Rai S P, Noble J, Singh D, et al. Spatiotemporal variability in stable isotopes of the Ganga River and factors affecting their distributions[J]. Catena, 2021, 204: 105360, doi: 10.1016/j.catena.2021.105360. |
[9] | Jesiya N, Gopinath G, Resmi T. Comprehending the groundwater recharge of a coastal city in humid tropical setting using stable isotopes[J]. Journal of Environmental Management, 2021, 287: 112260, doi: 10.1016/j.jenvman.2021.112260. |
[10] | Ma J, Li Z, Ma B, et al. Determination of groundwater recharge mechanisms using stable isotopes in small watersheds of the Loess Plateau, China[J]. Hydrogeology Journal, 2021, 29(2): 765-781. |
[11] | 王雨山, 郭媛, 周殷竹, 等. 基于水化学和同位素评价马莲河下游地下水补给河水的时空变化[J]. 干旱区地理, 2020, 43(2): 290-298. |
[11] | [Wang Yushan, Guo Yuan, Zhou Yinzhu, et al. Quantifications of spatial and temporal variations in groundwater discharge into a river using hydrochemical and isotopic tracers[J]. Arid Land Geography, 2020, 43(2): 290-298.] |
[12] | 文广超, 王文科, 段磊, 等. 基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J]. 干旱区地理, 2018, 41(4): 734-743. |
[12] | [Wen Guangchao, Wang Wenke, Duan Lei, et al. Quantitatively evaluating exchanging relationship between river water and groundwater in Bayin River Basin of northwest China using hydrochemistry and stable isotope[J]. Arid Land Geography, 2018, 41(4): 734-743.] |
[13] | 许秀丽, 李云良, 谭志强, 等. 鄱阳湖典型湿地地下水-河湖水转化关系[J]. 中国环境科学, 2021, 41(4): 1824-1833. |
[13] | [Xu Xiuli, Li Yunliang, Tan Zhiqiang, et al. Groundwater, river water and lake water transformations in a typical wetland of Poyang Lake[J]. China Environmental Science, 2021, 41(4): 1824-1833.] |
[14] | 张俊, 尹立河, 顾小凡, 等. 同位素水化学指示的新疆孔雀河流域地下水与地表水关系[J]. 西北地质, 2021, 54(1): 185-195. |
[14] | [Zhang Jun, Yin Lihe, Gu Xiaofan, et al. Study on the relationship between groundwater and surface water in Xinjiang Kongque River Basin using isotopes and hydrochemistry method[J]. Northwestern Geology, 2021, 54(1): 185-195.] |
[15] | 张艺武, 苏小四, 王骞迎, 等. 伊犁河谷西部平原区地表水与地下水转化关系研究[J]. 北京师范大学学报(自然科学版), 2020, 56(5): 664-674. |
[15] | [Zhang Yiwu, Su Xiaosi, Wang Qianying, et al. Surface water-groundwater interactions in the western plain of the Ili Valley[J]. Journal of Beijing Normal University (Natural Science Edition), 2020, 56(5): 664-674.] |
[16] | 郝帅, 李发东, 李艳红, 等. 基于氢氧稳定同位素的艾比湖流域地表水与地下水转化关系[J]. 水土保持学报, 2021, 35(4): 172-177, 185. |
[16] | [Hao Shuai, Li Fadong, Li Yanhong, et al. Transformation between surface water and groundwater in Ebinur Lake Basin based on hydrogen and oxygen stable isotopes[J]. Journal of Soil and Water Conservation, 2021, 35(4): 172-177, 185.] |
[17] | 郝帅, 李发东, 李艳红, 等. 艾比湖流域降水、地表水和地下水稳定同位素特征[J]. 干旱区地理, 2021, 44(4): 934-942. |
[17] | [Hao Shuai, Li Fadong, Li Yanhong, et al. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin[J]. Arid Land Geography, 2021, 44(4): 934-942.] |
[18] | Hao S, Li F D, Li Y H, et al. Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake Basin[J]. Science of the Total Environment, 2019, 657: 1041-1050. |
[19] | 朱世丹. 艾比湖流域水质时空变化特征及驱动机制[D]. 乌鲁木齐: 新疆大学, 2020. |
[19] | [Zhu Shidan. Spatial and temporal variation characteristics of water quality and its driving mechanism in Ebinur Lake Watershed[D]. Urumqi: Xinjiang University, 2020.] |
[20] | 朱世丹, 张飞, 张海威, 等. 新疆艾比湖主要入湖河流同位素及水化学特征的季节变化[J]. 湖泊科学, 2018, 30(6): 1707-1721. |
[20] | [Zhu Shidan, Zhang Fei, Zhang Haiwei, et al. Seasonal variation of the isotope and hydrochemical characteristics of the main lake rivers in Lake Ebinur, Xinjiang[J]. Journal of Lake Sciences, 2018, 30(6): 1707-1721.] |
[21] | 丁建丽, 葛翔宇, 王敬哲. 中国艾比湖湿地识别及其时空动态变化[J]. 自然资源学报, 2021, 36(8): 1949-1963. |
[21] | [Ding Jianli, Ge Xiangyu, Wang Jingzhe. Ebinur Lake wetland identification and its spatio-temporal dynamic changes[J]. Journal of Natural Resources, 2021, 36(8): 1949-1963.] |
[22] | 王瑾杰, 丁建丽, 张喆. 2008—2014年新疆艾比湖流域土壤水分时空分布特征[J]. 生态学报, 2019, 39(5): 1784-1794. |
[22] | [Wang Jinjie, Ding Jianli, Zhang Zhe. Temporal-spatial dynamic change characteristics of soil moisture in Ebinur Lake Basin from 2008—2014[J]. Acta Ecologica Sinica, 2019, 39(5): 1784-1794.] |
[23] | 曹连江. 电子信息测量及其误差分析校正的研究[M]. 长春: 东北师范大学出版社, 2017. |
[23] | [Cao Lianjiang. Study of electronic information measurement and its error analysis correction[M]. Changchu: Northeast Normal University Press, 2017.] |
[24] | Zhao B, Li Z, Li P, et al. Effects of ecological construction on the transformation of different water types on Loess Plateau, China[J]. Ecological Engineering, 2020, 144: 105642, doi: 10.1016/j.ecoleng.2019.105642. |
[25] | Tan H, Wen X, Rao W, et al. Temporal variation of stable isotopes in a precipitation-groundwater system: Implications for determining the mechanism of groundwater recharge in high mountain-hills of the Loess Plateau, China[J]. Hydrological Processes, 2016, 30(10): 1491-1505. |
[26] | 李捷, 姜颖, 刘玉莲, 等. 凉水河流域地下水水化学特征和时空变化规律[J]. 中国环境科学, 2022, 42(4): 1847-1853. |
[26] | [Li Jie, Jiang Ying, Liu Yulian, et al. Hydrolochemical characteristics and spatial-temporal variations of groundwater in the Liangshui River Basin, Beijing[J]. China Environmental Science, 2022, 42(4): 1847-1853.] |
[27] | Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. |
[28] | 尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3): 251-254. |
[28] | [Yin Guan, Ni Shijun, Zhang Qichun. Deuterium excess parameter and geohydrology significance: Taking the geohydrology researches in Jiuzaigou and Yele, Sichuan for example[J]. Journal of Chengdu University of Technology, 2001, 28(3): 251-254.] |
[29] | Wang S J, Zhang M J, Hughes C E, et al. Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, Central Asia[J]. Tellus B: Chemical and Physical Meteorology, 2016, 68(1): 26206, doi: 10.3402/tellusb.v68.26206. |
[30] | 袁瑞丰, 贾文雄, 李宗省, 等. 石羊河流域降水稳定同位素变化的区域差异[J]. 中国环境科学, 2020, 40(11): 4945-4956. |
[30] | [Yuan Ruifeng, Jia Wenxiong, Li Zongxing, et al. Precipitation stable isotope regional difference in Shiyang River Basin[J]. China Environmental Science, 2020, 40(11): 4945-4956.] |
[31] | Tan H, Liu Z, Rao W, et al. Understanding recharge in soil-groundwater systems in high loess hills on the Loess Plateau using isotopic data[J]. Catena, 2017, 156: 18-29. |
[32] | 玛尔胡拜·牙生, 马龙, 吉力力·阿不都外力, 等. 新疆天山西段夏季河流水化学特征及其影响因素研究[J]. 干旱区研究, 2021, 38(3): 600-609. |
[32] | [Yasheng Maerhubai, Ma Long, Abuduwaili Jilili, et al. Hydrochemical characteristics and their influence on rivers in the western part of the Tianshan Mountains, Xinjiang, China[J]. Arid Zone Research, 2021, 38(3): 600-609.] |
[33] | Mohammed A M, Krishnamurthy R, Kehew A E, et al. Factors affecting the stable isotopes ratios in groundwater impacted by intense agricultural practices: A case study from the Nile Valley of Egypt[J]. Science of the Total Environment, 2016, 573: 707-715. |
[34] | Sun Z, Zhu G, Zhang Z, et al. Identifying surface water evaporation loss of inland river basin based on evaporation enrichment model[J]. Hydrological Processes, 2021, 35(3): e14093, doi: 10.1002/hyp.14093. |
[35] | 雷米, 周金龙, 张杰, 等. 新疆博尔塔拉河流域平原区地表水与地下水水化学特征及转化关系[J]. 环境科学, 2022, 43(4): 1873-1884. |
[35] | [Lei Mi, Zhou Jinlong, Zhang Jie, et al. Hydrochemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River Basin, Xinjiang[J]. Environmental Science, 2022, 43(4): 1873-1884.] |
/
〈 |
|
〉 |