Circulation classification and cause analysis of the warm-area blizzards in Tacheng area in recent 20 years
Received date: 2021-02-28
Revised date: 2022-05-11
Online published: 2023-02-01
Select daily precipitation, temperature, conventional ground and upper-air observation data, the national center for environmental prediction reanalysis data collected from seven national meteorological observatories in the Tacheng area of Xinjiang, China, from November 2000 to March 2019 to determine the warm snowstorm weather process in the Tacheng area over the past 20 years. The analysis results show the following: (1) The warm-area blizzards in the Tacheng area occurred in Tacheng Station, Yumin Station, and Emin Station in the Tacheng-Emin Basin, and Tacheng Station had the most frequent occurrences; in terms of time distribution, the frequency of warm-area blizzards occurred in November and December and was primarily concentrated in mid-November to early December, followed by January and the least in February. (2) The blizzard in the warm area of Tacheng is divided into three types: low trough front type, horizontal trough bottom type, and northwest jet type. The surface low pressure is primarily in the west and northwest path. The low trough front type is the most typical warm-area blizzard situation, which primarily occurs from November to early December and occurs in the confluence area of the frontal area of the low trough in West Siberia and the mid-latitude short-wave trough of the southern branch; the surface low pressure has a northwest path. The horizontal trough bottom type occurs primarily from November to January of the following year and occurs in the strong frontal area in which the westward airflow at the bottom of the polar frontal area and the warm and humid southwesterly airflow at the mid-latitude converge; the surface low pressure follows a westward path. The northwest jet type primarily occurs from November to December. It occurs in the northwesterly airflow in the polar frontal area, and the surface low pressure has a northwest path. (3) The superimposed area of 500-300 hPa strong northwest or westward jet, 700 hPa westward low-level jet, and 850 hPa warm shear is consistent with the blizzard fall area in the warm area. The low trough front type and the northwest jet type produce blizzards in the frontal warm area, and the horizontal trough bottom type produces blizzards in the low-pressure right warm front. (4) The water vapor in the low trough front type and the horizontal trough bottom type is in a westward path. The water vapor from the Mediterranean Sea and the Arabian Sea is improved by the Caspian Sea, Aral Sea, and then transported to the blizzard area. The northwest jet type has two water vapor types in the west and northwest. The water vapor from the high-latitude Barents Sea and the water vapor from the mid- and low-latitude Caspian Sea, Aral Sea, the Mediterranean Sea, and the Arabian Sea converge near Lake Balkhash and are transported to the blizzard area. The strong convergence center is located between 850 hPa and 700 hPa.
Juanjuan WEI , Yu WAN , Junlan ZHANG , Fenghuan ZHAO , Anbei LI . Circulation classification and cause analysis of the warm-area blizzards in Tacheng area in recent 20 years[J]. Arid Land Geography, 2022 , 45(6) : 1718 -1728 . DOI: 10.12118/j.issn.1000-6060.2022.073
[1] | 张志富, 希爽, 刘娜, 等. 1961—2012年中国降雪时空变化特征分析[J]. 资源科学, 2015, 37(9): 1765-1773. |
[1] | [Zhang Zhifu, Xi Shuang, Liu Na, et al. Snowfall change characteristics in China from 1961 to 2012[J]. Resources Science, 2015, 37(9): 1765-1773.] |
[2] | 刘玉莲, 任国玉, 于宏敏. 中国降雪气候学特征[J]. 地理科学, 2012, 32(10): 1176-1185. |
[2] | [Liu Yulian, Ren Guoyu, Yu Hongmin. Climatology of snow in China[J]. Scientia Geographica Sinica, 2012, 32(10): 1176-1185.] |
[3] | 董啸, 周顺武, 胡中明, 等. 近50年来东北地区暴雪时空分布特征[J]. 气象, 2010, 36(12): 74-79. |
[3] | [Dong Xiao, Zhou Shunwu, Hu Zhongming, et al. Characteristics of spatial and temporal variation of heavy snowfall in northeast China in recent 50 years[J]. Meteorological Monthly, 2010, 36(12): 74-79.] |
[4] | 陈长胜, 王盘兴, 杨秀峰, 等. 东北地区暴雪天气的统计学划分方法及其时空分布特征[J]. 地理科学, 2012, 32(10): 1275-1281. |
[4] | [Chen Changsheng, Wang Panxing, Yang Xiufeng, et al. Classification and features of spatio-temporal variation of snowstorms in northeast China[J]. Scientia Geographica Sinica, 2012, 32(10): 1275-1281.] |
[5] | 王晓明, 孙妍, 云天, 等. 1961—2010年吉林不同类型暴雪天气气候特征[J]. 高原气象, 2015, 34(4): 1139-1148. |
[5] | [Wang Xiaoming, Sun Yan, Yun Tian, et al. Climatological characteristics of different type heavy snowfall weather in Jilin during 1961—2010[J]. Plateau Meteorology, 2015, 34(4): 1139-1148.] |
[6] | 阎琦, 温敏, 陆井龙, 等. 两次引发辽宁暴雪过程低涡的动力发展机制[J]. 气象, 2016, 42(4): 406-414. |
[6] | [Yan Qi, Wen Min, Lu Jinglong, et al. Dynamic diagnosis on formation and developing mechanism of two vortices causing snowstorms in Liaoning[J]. Meteorological Monthly, 2016, 42(4): 406-414.] |
[7] | 孙欣, 蔡芗宁, 陈传雷, 等. “070304”东北特大暴雪的分析[J]. 气象, 2011, 37(7): 863-870. |
[7] | [Sun Xin, Cai Xiangning, Chen Chuanlei, et al. Analysis of the 4 March 2007 heavy snowstorm in northeast China[J]. Meteorological Monthly, 2011, 37(7): 863-870.] |
[8] | 张迎新, 张守保, 裴玉杰, 等. 2009年11月华北暴雪过程的诊断分析[J]. 高原气象, 2011, 30(5): 1204-1212. |
[8] | [Zhang Yingxin, Zhang Shoubao, Pei Yujie, et al. Diagnostic analysis on snowstorm process in north China in November 2009[J]. Plateau Meteorology, 2011, 30(5): 1204-1212.] |
[9] | 周雪松, 谈哲敏. 华北回流暴雪发展机理个例研究[J]. 气象, 2008, 34(1): 18-26. |
[9] | [Zhou Xuesong, Tan Zhemin. Case study on development mechanism of a snow storm over north China[J]. Meteorological Monthly, 2008, 34(1): 18-26.] |
[10] | 赵桂香, 程麟生, 李新生. “04·12”华北大到暴雪过程切变线的动力诊断[J]. 高原气象, 2007, 26(3): 615-623. |
[10] | [Zhao Guixiang, Cheng Linsheng, Li Xinsheng. Dynamic diagnosis of shear line from “04·12” north China to blizzard[J]. Plateau Meteorology, 2007, 26(3): 615-623.] |
[11] | 张元春, 孙建华, 傅慎明. 冬季一次引发华北暴雪的低涡涡度分析[J]. 高原气象, 2012, 31(2): 387-399. |
[11] | [Zhang Yuanchun, Sun Jianhua, Fu Shenming. Analysis of vorticity during vortex producing snowstorm in north China in winter[J]. Plateau Meteorology, 2012, 31(2): 387-399.] |
[12] | 林志强, 假拉, 薛改萍, 等. 1980—2010年西藏高原大到暴雪的时空分布和环流特征[J]. 高原气象, 2014, 33(4): 900-906. |
[12] | [Lin Zhiqiang, Jian La, Xue Gaiping, et al. Spatial-temporal distribution and general circulation of heavy snow over Tibet Plateau in 1980—2000[J]. Plateau Meteorology, 2014, 33(4): 900-906.] |
[13] | 索渺清, 丁一汇. 南支槽与孟加拉湾风暴结合对一次高原暴雪过程的影响[J]. 气象, 2014, 40(9): 1033-1047. |
[13] | [Suo Miaoqing, Ding Yihui. A case on the effect of southern branch trough in the subtropical westerlies combined with storm over the bay of Bengal on plateau snowstorm[J]. Meteorological Monthly, 2014, 40(9): 1033-1047.] |
[14] | 王勇, 赵战成, 晏军, 等. 新疆雪灾的时空分布特征及其等级划分[J]. 干旱区地理, 2020, 43(3): 577-583. |
[14] | [Wang Yong, Zhao Zhancheng, Yan Jun, et al. Spatial and temporal distribution characteristics and its classification of snow disaster in Xinjiang[J]. Arid Land Geography, 2020, 43(3): 577-583.] |
[15] | 李如琦, 唐冶, 肉孜·阿基. 2010年新疆北部暴雪异常的环流和水汽特征分析[J]. 高原气象, 2015, 34(1): 155-162. |
[15] | [Li Ruqi, Tang Ye, Aki Rozi. Atmospheric circulation and water vapor characteristics of snowstorm anomalies in northern Xinjiang in 2010[J]. Plateau Meteorological, 2015, 34(1): 155-162.] |
[16] | 于碧馨, 洪月, 张云惠, 等. 天山两麓一次极端暴雪天气多尺度配置及机制分析[J]. 沙漠与绿洲气象, 2020, 14(5): 11-18. |
[16] | [Yu Bixin, Hong Yue, Zhang Yunhui, et al. Multiscale configuration characteristics and mechanism of an extreme snowstorm over the astride of Tianshan Mountains[J]. Desert and Oasis Meteorology, 2020, 14(5): 11-18.] |
[17] | 庄晓翠, 李健丽, 李博渊, 等. 天山北坡2次暴雪过程机理分析[J]. 沙漠与绿洲气象, 2019, 13(1): 29-38. |
[17] | [Zhuang Xiaocui, Li Jianli, Li Boyuan, et al. The mechanism analysis of two times blizzard in central of north slope of Tianshan Mountains[J]. Desert and Oasis Meteorology, 2019, 13(1): 29-38.] |
[18] | 张俊兰, 施俊杰, 李伟, 等. 乌鲁木齐暴雪天气的环流配置及中尺度系统特征[J]. 沙漠与绿洲气象, 2021, 15(1): 1-8. |
[18] | [Zhang Junlan, Shi Junjie, Li Wei, et al. Atmospheric circulation and meso-scale system characteristics of snowstorm in Urumqi[J]. Desert and Oasis Meteorology, 2021, 15(1): 1-8.] |
[19] | 李桉孛, 万瑜, 张俊, 等. 1961—2019年乌鲁木齐暴雪环流分型及其成因分析[J]. 干旱区地理, 2022, 45(2): 379-388. |
[19] | [Li Anbei, Wan Yu, Zhang Jun, et al. Circulation classification and cause analysis of the snowstorm case in Urumqi region from 1961 to 2019[J]. Arid Land Geography, 2022, 45(2): 379-388.] |
[20] | 刘晶, 李娜, 陈春艳. 新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J]. 高原气象, 2018, 37(1): 158-166. |
[20] | [Liu Jing, Li Na, Chen Chunyan. The frontal structure and analysis on mesoscale cloud characteristic during a warm zone blizzard process in north Xinjiang[J]. Plateau Meteorological, 2018, 37(1): 158-166.] |
[21] | 张林梅, 李博渊, 庄晓翠, 等. 新疆北部2次罕见暖区暴雪过程对比分析[J]. 沙漠与绿洲气象, 2021, 15(2): 1-9. |
[21] | [Zhang Linmei, Li Boyuan, Zhuang Xiaocui, et al. Comparative analysis of two rare warm zone snowstorms in northern Xinjiang[J]. Desert and Oasis Meteorology, 2021, 15(2): 1-9.] |
[22] | 李桉孛, 李如琦, 李娜, 等. 新疆北部持续暖区暴雪过程动力特征分析[J]. 沙漠与绿洲气象, 2020, 14(5): 53-60. |
[22] | [Li Anbei, Li Ruqi, Li Na, et al. Dynamic characteristics of persistent warm area snowstorm in northern Xinjiang[J]. Desert and Oasis Meteorology, 2020, 14(5): 53-60.] |
[23] | 美丽巴奴·艾则孜, 张俊兰, 王小亚. 北疆北部一次暖区暴雪天气过程的综合分析[J]. 沙漠与绿洲气象, 2021, 15(4): 107-114. |
[23] | [Aizezi Meilibanu, Zhang Junlan, Wang Xiaoya. Comprehensive analysis of a warm area snowstorm weather in northern Xinjiang[J]. Desert and Oasis Meteorology, 2021, 15(4): 107-114.] |
[24] | 庄晓翠, 李博渊, 陈春艳. 新疆北部一次暖区与冷锋暴雪并存的天气过程分析[J]. 气候与环境研究, 2016, 21(1): 17-28. |
[24] | [Zhuang Xiaocui, Li Boyuan, Chen Chunyan. Analysis of a snowstorm weather process in a coexisting warm area and cold front in northern Xinjiang[J]. Climatic and Environmental Research, 2016, 21(1): 17-28.] |
[25] | 周斌, 毛荣, 郭翔, 等. 塔城地区南部暴雪天气特征及环流分型[J]. 农业与技术, 2019, 39(14): 145-147. |
[25] | [Zhou Bin, Mao Rong, Guo Xiang, et al. Blizzard weather characteristics and circulation classification in southern Tacheng area[J]. Agriculture and Technology, 2019, 39(14): 145-147.] |
/
〈 |
|
〉 |