Climatology and Hydrology

Spatial distribution characteristics of temperature and precipitation trend in Qinghai Lake Basin from 2000 to 2018

  • Yanli HAN ,
  • Deyong YU ,
  • Kelong CHEN ,
  • Haizhen YANG
Expand
  • 1. Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China
    2. College of Geographical Science, Qinghai Normal University, Xining 810008, Qinghai, China
    3. College of Ecological Environment and Resources, Qinghai Nationalities University, Xining 810007, Qinghai, China
    4. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Received date: 2021-10-22

  Revised date: 2022-12-02

  Online published: 2022-08-11

Abstract

The Qinghai-Tibet Plateau, China is a sensitive area for global climate change. The spatial distribution and change trend of temperature and precipitation are the core and foundation of climate change research and provide basic data for developing ecological environment change assessment. This paper is based on the observation data of meteorological stations in the Qinghai Lake Basin and its surroundings during 2000—2018 using elevation as a covariate combined with the professional meteorological interpolation software ANUSPLIN to perform spatial interpolation of temperature and precipitation. The linear regression method was used to analyze the variation in the temperature and precipitation in the Qinghai Lake Basin. Furthermore, bivariate spatial autocorrelation analysis was used to analyze the spatial coupling relationship of temperature and precipitation in the basin. The research results show the following: (1) The temperature in the Qinghai Lake Basin from 2000 to 2018 showed an increasing, with an average growth rate of 0.30 ℃·(10a)-1, and increased significantly in spring. (2) Precipitation showed a significant increasing trend, with an average growth rate of 73.20 mm·(10a)-1; the growth rate is significant in spring and summer, the change is not obvious in autumn, and the winter tends to become dry. (3) The spatial matching of temperature and precipitation in the Qinghai Lake Basin is significantly different. On the interannual scale, the Moran’s I of temperature and precipitation is -0.66, showing a significantly negative correlation, with an area ratio of 67.56% and poor spatial matching of water and heat combinations. On a seasonal scale, the Moran’s I of temperature and precipitation in the Qinghai Lake Basin in spring, summer, autumn, and winter are -0.49, -0.80, -0.32, and -0.14, respectively, which are all negatively correlated in space. In spring and summer, the temperature in the low-altitude areas of the basin gradually increases, the precipitation in the high-altitude areas gradually increases, the area of negative correlation between temperature and precipitation gradually increases, and the spatial matching of water and heat is poor. Notably, the large water body of Qinghai Lake has an obvious regulating effect on the local temperature in the area surrounding the lake and serves as the climate regulator of the Qinghai Lake Basin.

Cite this article

Yanli HAN , Deyong YU , Kelong CHEN , Haizhen YANG . Spatial distribution characteristics of temperature and precipitation trend in Qinghai Lake Basin from 2000 to 2018[J]. Arid Land Geography, 2022 , 45(4) : 999 -1009 . DOI: 10.12118/j.issn.1000-6060.2021.490

References

[1] 吴绍洪, 尹云鹤, 郑度, 等. 青藏高原近30年气候变化趋势[J]. 地理学报, 2005, 60(1): 3-11.
[1] [ Wu Shaohong, Yin Yunhe, Zheng Du, et al. Climate changes in the Tibetan Plateau during the last three decades[J]. Acta Geographica Sinica, 2005, 60(1): 3-11. ]
[2] 潘保田, 李吉均. 青藏高原: 全球气候变化的驱动机与放大器──Ⅲ. 青藏高原隆起对气候变化的影响[J]. 兰州大学学报, 1996, 32(1): 108-115.
[2] [ Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change: Ⅲ. The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes[J]. Journal of Lanzhou University, 1996, 32(1): 108-115. ]
[3] Yao T, Thompson L, Yang W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[4] 杨倩, 陈权亮, 陈朝平, 等. 全球变暖背景下青藏高原中东部地区温度变化特征[J]. 成都信息工程大学学报, 2020, 35(3): 352-358.
[4] [ Yang Qian, Chen Quanliang, Chen Chaoping, et al. Spatial-temporal changes of temperature over the central and eastern part of Tibetan Plateau from 1960 to 2016[J]. Journal of Chengdu University of Information Technology, 2020, 35(3): 352-358. ]
[5] 马伟东, 刘峰贵, 周强, 等. 1961-2017年青藏高原极端降水特征分析[J]. 自然资源学报, 2020, 35(12): 3039-3050.
[5] [ Ma Weidong, Liu Fenggui, Zhou Qiang, et al. Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017[J]. Journal of Natural Resources, 2020, 35(12): 3039-3050. ]
[6] 刘凤, 曾永年. 近16年青海高原植被NPP时空格局变化及气候与人为因素的影响[J]. 生态学报, 2019, 39(5): 1528-1540.
[6] [ Liu Feng, Zeng Yongnian. Spatial-temporal change in vegetation net primary productivity and its response to climate and human activities in Qinghai Plateau in the past 16 years[J]. Acta Ecologica Sinica, 2019, 39(5): 1528-1540. ]
[7] 次央, 次仁旺姆, 德吉, 等. 1961-2015年青藏高原极端气温事件的气候变化特征[J]. 高原山地气象研究, 2021, 41(2): 108-114.
[7] [ Ci Yang, Ciren Wangmu, De Ji, et al. Climate change characteristics of extreme temperature events in the Qinghai-Tibet Plateau from 1961 to 2015[J]. Plateau and Mountain Meteorology Research, 2021, 41(2): 108-114. ]
[8] 王慧, 张璐, 石兴东, 等. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[8] [ Wang Hui, Zhang Lu, Shi Xingdong, et al. Some new changes of the regional climate on the Tibetan Plateau since 2000[J]. Advances in Earth Science, 2021, 36(8): 785-796. ]
[9] 吴国栋, 薛河儒, 刘廷玺. 1961-2016年锡林河流域降水及平均气温变化特征及趋势[J]. 干旱区地理, 2021, 44(3): 769-777.
[9] [ Wu Guodong, Xue Heru, Liu Tingxi. Change characteristics and trends of precipitation and average temperature in the Xilinhe River Basin from 1961 to 2016[J]. Arid Land Geography, 2021, 44(3): 769-777. ]
[10] 张明, 曹学章. 青海湖流域近50年气候变化与特征分析[J]. 新疆环境保护, 2016, 38(4): 6-11.
[10] [ Zhang Ming, Cao Xuezhang. Analysis of climate change and its characteristics in Qinghai Lake Basin over the past 50 years[J]. Environmental Protection of Xinjiang, 2016, 38(4): 6-11. ]
[11] 曹生奎, 曹广超, 陈克龙, 等. 青海湖流域近50年气温、降水变化特征研究[J]. 青海师范大学学报(自然科学版), 2013, 29(2): 37-41, 47.
[11] [ Cao Shengkui, Cao Guangchao, Chen Kelong, et al. Research in the variation characteristics of temperature and precipitation for lately 50 years in the Qinghai Lake Basin[J]. Journal of Qinghai Normal University (Natural Science Edition), 2013, 29(2): 37-41, 47. ]
[12] 张令振, 文霞, 祁小娟. 青海湖流域气候变化特征及其影响[J]. 青海科技, 2019, 26(3): 84-91.
[12] [ Zhang Lingzhen, Wen Xia, Qi Xiaojuan. Characteristics and impacts of climate change in Qinghai Lake Basin[J]. Qinghai Science and Technology, 2019, 26(3): 84-91. ]
[13] 赵建婷, 王艳君, 苏布达, 等. 印度河流域气温、降水、蒸发及干旱变化特征[J]. 干旱区地理, 2020, 43(2): 349-359.
[13] [ Zhao Jianting, Wang Yanjun, Su Buda, et al. Spatiotemporal distributions of temperature, precipitation, evapotranspiration, and drought in the Indus River Basin[J]. Arid Land Geography, 2020, 43(2): 349-359. ]
[14] 孔锋, 孙劭. 基于均值与极值的中国夏季气温与地温的时空格局与差异特征研究[J]. 干旱区资源与环境, 2021, 35(7): 84-91.
[14] [ Kong Feng, Sun Shao. Spatiotemporal pattern and difference characteristics of summer atmospheric temperature and ground temperature in China based on mean and extreme values[J]. Journal of Arid Land Resources and Environment, 2021, 35(7): 84-91. ]
[15] 李惠梅, 张安录, 高泽兵, 等. 青海湖地区生态系统服务价值变化分析[J]. 地理科学进展, 2012, 31(12): 1747-1754.
[15] [ Li Huimei, Zhang Anlu, Gao Zebing, et al. Quantitative analysis of the impacts of climate and socio-economic driving factors of land use change on the ecosystem services value in the Qinghai Lake area[J]. Progress in Geography, 2012, 31(12): 1747-1754. ]
[16] 李春娥. 新疆土地荒漠化时空变化特征分析[J]. 测绘科学, 2018, 43(9): 33-39.
[16] [ Li Chun’e. Spatial-temporal variation of land desertification in Xinjiang[J]. Science of Surveying and Mapping, 2018, 43(9): 33-39. ]
[17] 陈忠升, 高翊富, 赵仕梅. 1960-2017年成渝经济区气候变化时空特征分析[J]. 西华师范大学学报(自然科学版), 2019, 40(3): 85-92.
[17] [ Chen Zhongsheng, Gao Yufu, Zhao Shimei. On the spatial-temporal characteristics of climate change in Cheng-Yu Economic Zone during 1960-2017[J]. Journal of China West Normal University (Natural Science Edition), 2019, 40(3): 85-92. ]
[18] 李月臣, 何志明, 刘春霞. 基于站点观测数据的气温空间化方法评述[J]. 地理科学进展, 2014, 33(8): 1019-1028.
[18] [ Li Yuechen, He Zhiming, Liu Chunxia. Review on spatial interpolation methods of temperature data from meteorological stations[J]. Progress in Geography, 2014, 33(8): 1019-1028. ]
[19] 刘正佳, 于兴修, 王丝丝, 等. 薄盘光滑样条插值中三种协变量方法的降水量插值精度比较[J]. 地理科学进展, 2012, 31(1): 56-62.
[19] [ Liu Zhengjia, Yu Xingxiu, Wang Sisi, et al. Comparative analysis of three covariates methods in Thin-Plate Smoothing Splines for interpolating precipitation[J]. Progress in Geography, 2012, 31(1): 56-62. ]
[20] 谭剑波, 李爱农, 雷光斌. 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 2016, 35(4): 875-886.
[20] [ Tan Jianbo, Li Ainong, Lei Guangbin. Contrast on Anusplin and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016, 35(4): 875-886. ]
[21] Hijmans R J, Ca Meron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2010, 25(15): 1965-1978.
[22] Hutchinson M F. The application of Thin Plate Smoothing Splines to continent wide data assimilation. Data assimilation systems, BMRC research report[R]. Melbourne: Bureau of Meteorology, 1991: 104-113.
[23] 钱永兰, 吕厚荃, 张艳红. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J]. 气象与环境学报, 2010, 26(2): 7-15.
[23] [ Qian Yonglan, Lü Houquan, Zhang Yanhong. Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPLIN software[J]. Journal of Meteorology and Environment, 2010, 26(2): 7-15. ]
[24] Bates D M, Lindstrom M J, Wahba G, et al. GVCPACK-routines for generalized cross validation[J]. Communication in Statistics-Simulation and Computation, 1987, 16(1): 263-297.
[25] Hutchinson M F. Interpolating mean rainfall using thin plate smoothing splines[J]. International Journal of Geographical Information Systems, 1995, 9(4): 385-403.
[26] 徐宗学, 张楠. 黄河流域近50年降水变化趋势分析[J]. 地理研究, 2006, 25(1): 27-34.
[26] [ Xu Zongxue, Zhang Nan. Long-term trend of precipitation in the Yellow River Basin during the past 50 years[J]. Geographical Research, 2006, 25(1): 27-34. ]
[27] 江颖慧, 焦利民, 张博恩. 城市地表温度与NDVI空间相关性的尺度效应[J]. 地理科学进展, 2018, 37(10): 1362-1370.
[27] [ Jiang Yinghui, Jiao Limin, Zhang Bo’en. Scale effect of the spatial correlation between urban land surface temperature and NDVI[J]. Progress in Geography, 2018, 37(10): 1362-1370. ]
[28] 雷金睿, 陈宗铸, 吴庭天, 等. 海南岛东北部土地利用与生态系统服务价值空间自相关格局分析[J]. 生态学报, 2019, 39(7): 2366-2377.
[28] [ Lei Jinrui, Chen Zongzhu, Wu Tingtian, et al. Spatial autocorrelation pattern analysis of land use and the value of ecosystem services in northeast Hainan Island[J]. Acta Ecologica Sinica, 2019, 39(7): 2366-2377. ]
[29] 连健, 李小娟, 宫辉力, 等. 基于ESDA的北京市乡镇农业经济空间特性分析[J]. 地域研究与开发, 2010, 29(1): 130-135.
[29] [ Lian Jian, Li Xiaojuan, Gong Huili, et al. Analysis of agricultural economy spatial characteristics of Beijing townships based on ESDA[J]. Areal Research and Development, 2010, 29(1): 130-135. ]
[30] 侯进宇. 基于空间自相关的村域经济研究--以河南省巩义市为例[D]. 开封: 河南大学, 2012.
[30] [ Hou Jinyu. Research on village economy based on spatial autocorrelation:A case study of Gongyi City, Henan Province[D]. Kaifeng: Henan University, 2012. ]
[31] Anselin L, Syabri I, Kho Y. GeoDa: An introduction to spatial data analysis[J]. Geographical Analysis, 2005, 38(1): 5-22.
[32] 任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 63(6): 942-956.
[32] [ Ren Guoyu, Guo Jun, Xu Mingzhi, et al. Climate changes of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 63(6): 942-956. ]
[33] 裴生山, 张顺桂, 张思芳, 等. 青海湖流域降水量变化趋势分析[J]. 水资源与水工程学报, 2013, 24(4): 217-219, 224.
[33] [ Pei Shengshan, Zhang Shungui, Zhang Sifang, et al. Analysis of change trend of precipitation in Qinghai Lake Basin[J]. Journal of Water Resources and Water Engineering, 2013, 24(4): 217-219, 224. ]
[34] 张强, 朱飙, 杨金虎, 等. 西北地区气候湿化趋势的新特征[J]. 科学通报, 2021, 66(28): 3757-3771.
[34] [ Zhang Qiang, Zhu Biao, Yang Jinhu, et al. New characteristics about the climate humidification trend in northwest China[J]. Chinese Science Bulletin, 2021, 66(28): 3757-3771. ]
[35] 赵金鹏. 1961-2016年青藏高原极端气候事件变化特征研究[D]. 兰州: 兰州大学, 2019.
[35] [ Zhao Jinpeng. Study on the variation characteristics of extreme climate events on the Qinghai-Tibetan Plateau during 1961-2016[D]. Lanzhou: Lanzhou University, 2019. ]
[36] 张寅, 闫凯, 刘钊, 等. 基于CRU数据的1901-2018年全球陆表气温时空变化特征分析[J]. 首都师范大学学报(自然科学版), 2020, 41(6): 51-58.
[36] [ Zhang Yan, Yan Kai, Liu Zhao, et al. Analysis of spatio-temporal variation characteristics of global surface air temperature from 1901 to 2018 based on CRU data[J]. Journal of Capital Normal University (Natural Sciences Edition), 2020, 41(6): 51-58. ]
[37] 赵东升, 高璇, 吴绍洪, 等. 基于自然分区的1960-2018年中国气候变化特征[J]. 地球科学进展, 2020, 35(7): 750-760.
[37] [ Zhao Dongsheng, Gao Xuan, Wu Shaohong, et al. Trend of climate variation in China from 1960 to 2018 based on natural regionalization[J]. Advances in Earth Science, 2020, 35(7): 750-760. ]
[38] 吴成启, 唐登勇. 近50年来全球变暖背景下青藏高原气温变化特征[J]. 水土保持研究, 2017, 24(6): 262-266, 272.
[38] [ Wu Chengqi, Tang Dengyong. Change of temperature in the Tibetan Plateau in the context of global warming in recent 50 years[J]. Research of Soil and Water Conservation, 2017, 24(6): 262-266, 272. ]
[39] 魏莹, 段克勤. 1980-2016年青藏高原变暖时空特征及其可能影响原因[J]. 高原气象, 2020, 39(3): 459-466.
[39] [ Wei Ying, Duan Keqin. Temporal and spatial characteristics and possible causes research of Qinghai-Tibetan Plateau warming from 1980 to 2016[J]. Plateau Meteorology, 2020, 39(3): 459-466. ]
[40] 刘小园. 青海湖流域水文特征[J]. 水文, 2004, 24(2): 60-61.
[40] [ Liu Xiaoyuan. The hydrological characteristics of the basin of Lake Qinghai[J]. Journal of China Hydrology, 2004, 24(2): 60-61. ]
[41] 方健梅, 马国青, 余新晓, 等. 青海湖流域NDVI时空变化特征及其与气候之间的关系[J]. 水土保持学报, 2020, 34(3): 105-112.
[41] [ Fang Jianmei, Ma Guoqing, Yu Xinxiao, et al. Spatiotemporal variation of NDVI in Qinghai Lake Basin and its relationship with climatic factors[J]. Journal of Soil and Water Conservation, 2020, 34(3): 105-112. ]
[42] 肖莲桂, 石明章, 喇玉先, 等. 1961-2019年祁连山地区降水变化特征分析[J]. 青海科技, 2020, 27(5): 76-80.
[42] [ Xiao Liangui, Shi Mingzhang, La Yuxian, et al. Analysis on the characteristics of precipitation changes in Qilian Mountains from 1961 to 2019[J]. Qinghai Science and Technology, 2020, 27(5): 76-80. ]
Outlines

/