Characteristics of soil particle size distribution of typical plant communities on the hilly areas of Loess Plateau
Received date: 2021-10-20
Revised date: 2022-01-17
Online published: 2022-08-11
Soil particle size distribution (PSD), a basic soil physical property, is highly related to soil structure, water movement, fertility development, porosity condition, and soil-forming process and has been widely studied as an indicator of soil erosion in different plant communities. Generally, soil PSD comprises different layers of clay, silt, and sand. Among these layers, clay has the colloidal property that can effectively promote the formation and development of soil aggregates, enhance the stability of soil structure, and strengthen soil erosion resistance. Previous studies on the Loess Plateau of China only focused on the soil PSD in the upper soil layers, but the vertical variation in soil PSD in the deep layers is unknown. Additionally, planting large areas of pure forests leads to problems such as a single stand structure, weak stability of the intraforest ecosystem, poor resistance to disturbance, and restricted soil quality, all of which affect the sustainability of vegetation restoration. In the present work, soil samples (0-200 cm) from grassland, Pinus tabuliformis pure forests, Armeniaca sibirica pure forests, Pinus tabuliformis and Armeniaca sibirica mixed plantations were collected to examine the effects of different forest allocations on the vertical variation in soil PSD and provide a theoretical basis for the ecological reconstruction efforts work on the Loess Plateau. First, soil PSD was measured through laser diffraction technique. Then, soil particle size parameters (mean particle size, median particle size, standard deviation, and skewness and kurtosis values) and frequency distribution curve were calculated and analyzed. Finally, the fractal theory was applied to accurately express the soil structural form and function. Results showed that (1) the soils in the study area belonged to silty loam. The soil PSD of different plant communities was dominated by silt accounting for 56.58%-71.67% followed by sand accounting for 21.37%-38.71% and clay accounting for 3.55%-6.96%. (2) The soil PSD of different plant communities, which were primarily affected by parent material, showed uniformity along the soil depth. Generally, the soil PSD of different plant communities reflected poor sorting, positive skewness, and sharp kurtosis. The frequency curves showed two peaks. Significant difference in PSD was only found at the soil surface (0-20 cm). (3) The soil average fractal dimension (0-200 cm) of grassland, Pinus tabuliformis pure forests, Armeniaca sibirica pure forests, and mixed plantations of Pinus tabuliformis and Armeniaca sibirica were 2.63, 2.60, 2.61, and 2.58, respectively. Soil fractal dimension, which was positively correlated with clay content, could accurately reflect the soil particle composition in grass land. Moreover, grassland in the Wuqi County had finer soil PSD than plantations.
Guoliang SHA , Tianxing WEI , Yuxuan CHEN , Yanchao FU , Kang REN . Characteristics of soil particle size distribution of typical plant communities on the hilly areas of Loess Plateau[J]. Arid Land Geography, 2022 , 45(4) : 1224 -1234 . DOI: 10.12118/j.issn.1000-6060.2021.487
[1] | Mohammadi M H, Meskini-Vishkaee F. Predicting soil moisture characteristic curves from continuous particle-size distribution data[J]. Pedosphere, 2013, 23(1): 70-80. |
[2] | Hu H C, Tian F Q, Hu H P. Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China[J]. Science China Technology Sciences, 2011, 54: 1568-1574. |
[3] | Paz-Ferreiro J, Vázquez E V, Miranda J G V. Assessing soil particle-size distribution on experimental plots with similar texture under different management systems using multifractal parameters[J]. Geoderma, 2010, 160(1): 47-56. |
[4] | 曾全超, 李娅芸, 刘雷, 等. 黄土高原草地植被土壤团聚体特征与可蚀性分析[J]. 草地学报, 2014, 22(4): 743-749. |
[4] | [ Zeng Quanchao, Li Yayun, Liu Lei, et al. Study on soil aggreate stability and soil erodibility in the grassland vegetation of the Loess Plateau region[J]. Acta Agrestia Sinica, 2014, 22(4): 743-749. ] |
[5] | 王佩将, 戴全厚, 丁贵杰, 等. 退化喀斯特植被恢复过程中的土壤抗蚀性变化[J]. 土壤学报, 2014, 51(4): 806-815. |
[5] | [ Wang Peijiang, Dai Quanhou, Ding Guijie, et al. Variation of soil anti-erodibility during restoration of degraded Karst vegetation[J]. Acta Pedologica Sinica, 2014, 51(4): 806-815. ] |
[6] | Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: Analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369. |
[7] | 李宗善, 杨磊, 王国梁, 等. 黄土高原水土流失治理现状、问题及对策[J]. 生态学报, 2019, 39(20): 7398-7409. |
[7] | [ Li Zongshan, Yang Lei, Wang Guoliang, et al. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions[J]. Acta Ecologica Sinica, 2019, 39(20): 7398-7409. ] |
[8] | Hua F, Wang X, Zheng X, et al. Opportunities for biodiversity gains under the world’s largest reforestation program[J]. Nature Communication, 2016, 7: 12717, doi: 10.1038/ncomms12717. |
[9] | 彭文英, 张科利, 陈瑶, 等. 黄土坡耕地退耕还林后土壤性质变化研究[J]. 自然资源学报, 2005, 20(2): 272-278. |
[9] | [ Peng Wenying, Zhang Keli, Chen Yao, et al. Research on soil quality change after returning farmland to forest on Loess loping croplands[J]. Journal of Natural Resources, 2005, 20(2): 272-278. ] |
[10] | 黄艳丽, 李占斌, 苏辉, 等. 黄土高原不同生态治理小流域土壤有机质、容重及黏粒含量的对比[J]. 应用生态报, 2019, 30(2): 370-378. |
[10] | [ Huang Yanli, Li Zhanbin, Su Hui, et al. Comparison of soil organic matter, bulk density and clay content in small watersheds under different ecological managements of Loess Plateau, China[J]. Journal of Applied Ecology, 2019, 30(2): 370-378. ] |
[11] | 杨灿, 魏天兴, 李亦然, 等. 黄土高原典型县域植被覆盖度时空变化及地形分异特征[J]. 生态学杂志, 2021, 40(6): 1830-1838. |
[11] | [ Yang Can, Wei Tianxing, Li Yiran, et al. Temporal and spatial variations of fractional vegetation cover and topographic differentiation characteristics in typical counties of Loess Plateau[J]. Chinese Journal of Ecology, 2021, 40(6): 1830-1838. ] |
[12] | Yu H W, Brandt M, Zhao M F, et al. Do afforestation projects increase core forests? Evidence from the Chinese Loess Plateau[J]. Ecological Indicators, 2020, 117: 106558, doi: 10.1016/j.ecolind.2020.106558. |
[13] | 刘增文, 段而军, 刘卓玛姐, 等. 黄土高原半干旱丘陵区不同树种纯林土壤性质极化研究[J]. 土壤学报, 2009, 46(6): 1110-1120. |
[13] | [ Liu Zengwen, Duan Erjun, Liu Zhuomajie, et al. Soil polarization under pure stands of different tree varieties in semi-arid hilly areas of the Loess Plateau[J]. Acta Pedological Sinica, 2009, 46(6): 1110-1120. ] |
[14] | 李浩, 胡婵娟, 冯德显, 等. 半干旱黄土丘陵区退化人工林群落结构调整下细根特征分析[J]. 干旱区地理, 2020, 43(6): 1523-1533. |
[14] | [ Li Hao, Hu Chanjuan, Feng Dexian, et al. Fine root characteristics of degraded artificial forest under community structure adjustment in semiarid loess hilly region[J]. Arid Land Geography, 2020, 43(6): 1523-1533. ] |
[15] | 刘青柏, 刘明国, 王玉涛, 等. 不同林型立地土壤水分性状及其持水能力的比较[J]. 干旱区研究, 2011, 28(5): 775-779. |
[15] | [ Liu Qingbo, Liu Mingguo, Wang Yutao, et al. Comparison of soil water properties and soil water storage capacity in different forest habitats[J]. Arid Zone Research, 2011, 28(5): 775-779. ] |
[16] | 信忠保, 许炯心, 余新晓. 近50年黄土高原水土流失的时空变化[J]. 生态学报, 2009, 29(3): 1129-1139. |
[16] | [ Xin Zhongbao, Xu Jiongxin, Yu Xinxiao. Temporal and spatial variability of sediment yield on the Loess Plateau in the past 50 years[J]. Acta Ecologica Sinica, 2009, 29(3): 1129-1139. ] |
[17] | Qiao J B, Zhu Y J, Jia X X, et al. Multifractal characteristics of particle size distributions (50-200 m) in soils in the vadose zone on the Loess Plateau, China[J]. Soil and Tillage Research, 2021, 205: 104786, doi: 10.1016/j.still.2020.104786. |
[18] | 李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996. |
[18] | [ Li Ting, Deng Qiang, Yuan Zhiyou, et al. Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau[J]. Environmental Science, 2015, 36(8): 2988-2996. ] |
[19] | 胡雅, 张露, 刘金宝. 黄土丘陵沟壑区沟道土壤养分分布特征研究[J]. 灌溉排水学报, 2018, 37(增刊2): 85-88. |
[19] | [ Hu Ya, Zhang Lu, Liu Jinbao. Distribution characteristics of soil nutrients in loess hilly and gully area[J]. Journal of Irrigation and Drainage, 2018, 37(Suppl. 2): 85-88. ] |
[20] | Martin W, Livia U, Eleanor H, et al. Soil organic carbon storage as a key function of soils: A review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162. |
[21] | 许智超, 张岩, 朱清科, 等. 半干旱黄土区退耕还林十年植被恢复变化分析--以陕西吴起县为例[J]. 生态环境学报, 2011, 20(1): 91-96. |
[21] | [ Xu Zhichao, Zhang Yan, Zhu Qingke, et al. Vegetation restoration since the project of returning cropland to forest in the semiarid Loess Plateau: A case study of Wuqi County, Shaanxi Province[J]. Ecology and Environment, 2011, 20(1): 91-96. ] |
[22] | Chen Y X, Wei T X, Sha G L, et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China[J]. Applied Soil Ecology, 2022, 170: 104292, doi: 10.1016/j.apsoil.2021.104292. |
[23] | 高广磊, 丁国栋, 赵媛媛, 等. 四种粒径分级制度对土壤体积分形维数测定的影响[J]. 应用基础与工程科学学报, 2014, 22(6): 1060-1068. |
[23] | [ Gao Guanglei, Ding Guodong, Zhao Yuanyuan, et al. Effects of soil particle size classification system on calculating volume-based fractal dimension[J]. Journal of Basic Science and Engingeering, 2014, 22(6): 1060-1068. ] |
[24] | 张佳瑞, 王金满, 祝宇成, 等. 分形理论在土壤学应用中的研究进展[J]. 土壤通报, 2017, 48(1): 221-228. |
[24] | [ Zhang Jiarui, Wang Jinman, Zhu Yucheng, et al. Application of fractal theory on pedology: A review[J]. Chinese Journal of Soil Science, 2017, 48(1): 221-228. ] |
[25] | 王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析--以黄土丘陵沟壑区为例[J]. 生态学报, 2007, 27(7): 3081-3089. |
[25] | [ Wang De, Fu Bojie, Chen Liding, et al. Fractal analysis on soil particle size distributions under different land-use types: A case study in the loess hilly areas of the Loess Plateau, China[J]. Acta Ecologica Sinica, 2007, 27(7): 3081-3089. ] |
[26] | 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899. |
[26] | [ Yang Peiling, Luo Yuanpei, Shi Yuanchun. Fractal characteristics of soil characterized by weight distribution of particle size[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899. ] |
[27] | 卢连战, 史正涛. 沉积物粒度参数内涵及计算方法的解析[J]. 环境科学与管理, 2010, 35(6): 54-60. |
[27] | [ Lu Lianzhan, Shi Zhengtao. Analysis for sediment grain size parameters of connotation sand calculation method[J]. Environmental Science and Management, 2010, 35(6): 54-60. ] |
[28] | 黄昌勇, 徐建明. 土壤学[M]. 第三版. 北京: 中国农业出版社, 1957: 108-115. |
[28] | [ Huang Changyong, Xu Jianming. Soil science[M]. 3rd ed. Beijing: China Agricultural Press, 1957: 108-115. ] |
[29] | 袁杰, 曹生奎, 曹广超, 等. 祁连山南坡不同植被类型土壤粒度特征[J]. 水土保持通报, 2019, 39(2): 76-82. |
[29] | [ Yuan Jie, Cao Shengkui, Cao Guangchao, et al. Soil particle size characteristics under different vegetation types on southern slope of Qilian Mountains[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 76-82. ] |
[30] | 脱登峰, 许明祥, 郑世清, 等. 黄土高原风蚀水蚀交错区侵蚀产沙过程及机理[J]. 应用生态学报, 2012, 23(12): 3281-3287. |
[30] | [ Tuo Dengfeng, Xu Mingxiang, Zheng Shiqing, et al. Sediment-yielding process and its mechanisms of slope erosion in wind-water erosion crisscross region of Loess Plateau, northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3281-3287. ] |
[31] | Xia Y, Zhou W J, Chen Y P, et al. Spatial variation of soil properties and carbon under different land use types on the Chinese Loess Plateau[J]. Science of the Total Environment, 2020, 703: 134946, doi: 10.1016/j.scitotenv.2019.134946. |
[32] | 唐骏, 党廷辉, 薛江, 等. 植被恢复对黄土区煤矿排土场土壤团聚体特征的影响[J]. 生态学报, 2016, 36(16): 5067-5077. |
[32] | [ Tang Jun, Dang Tinghui, Xue Jiang, et al. Effects of vegetation restoration on soil aggregate characteristics of an opencast coal mine dump in the loess area[J]. Acta Ecologica Sinica, 2016, 36(16): 5067-5077. ] |
[33] | 李程程, 曾全超, 贾培龙, 等. 黄土高原土壤团聚体稳定性及抗蚀性能力经度变化特征[J]. 生态学报, 2020, 40(6): 2039-2048. |
[33] | [ Li Chengcheng, Zeng Quanchao, Jia Peilong, et al. Characteristics of soil aggregate stability and corrosion resistance longitude change in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(6): 2039-2048. ] |
[34] | 李少华, 王学全, 包岩峰, 等. 不同类型植被对高寒沙区土壤改良效果的差异分析[J]. 土壤通报, 2016, 47(1): 60-64. |
[34] | [ Li Shaohua, Wang Xuequan, Bao Yanfeng, et al. Variability of soil properties under different vegetation plots in alpine sandy land[J]. Chinese Journal of Soil Science, 2016, 47(1): 60-64. ] |
[35] | 张雷一, 张静茹, 刘方, 等. 林草复合系统的生态效益[J]. 草业科学, 2014, 31(9): 1789-1797. |
[35] | [ Zhang Leiyi, Zhang Jingru, Liu Fang, et al. A review of ecological benefits of silvopasture systems[J]. Pratacultural Science, 2014, 31(9): 1789-1797. ] |
[36] | Fan Y, Miguez-Macho G, Jackson R, et al. Hydrologic regulation of plant rooting depth[J]. Proceedings of the National Academy of Sciences of the United States, 2017, 114(40): 10572-10577. |
[37] | Lü M K, Noormets A, Ukonmaanaho L, et al. Stability of soil organic carbon during forest conversion is more sensitive in deep soil than in topsoil in subtropical forests[J]. Pedobiologia, 2021, 84: 105716, doi: 10.1016/j.pedobi.2020.150706. |
[38] | 陈宇轩, 高广磊, 张英, 等. 呼伦贝尔沙地风沙土粒径分布特征[J]. 北京林业大学学报, 2019, 41(8): 124-130. |
[38] | [ Chen Yuxuan, Gao Guanglei, Zhang Ying, et al. Particle size distribution of aeolian soils in Hulun Buir Sandy Land, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2019, 41(8): 124-130. ] |
[39] | 张立恒, 李清雪, 王学全, 等. 高寒沙地中间锦鸡儿人工林根系分布及林下土壤特性研究[J]. 土壤通报, 2019, 50(4): 840-846. |
[39] | [ Zhang Liheng, Li Qingxue, Wang Xuequan, et al. Root distribution and soil properties under Caragana intermedia plantations in alpine sandy land[J]. Chinese Journal of Soil Science, 2019, 50(4): 840-846. ] |
[40] | Wang J, Zhao W W, Wang G, et al. Effects of long-term afforestation and natural grassland recovery on soil properties and quality in Loess Plateau (China)[J]. Science of the Total Environment, 2021, 770: 144833, doi: 10.1016/j.scitotenv.2020.144833. |
[41] | 王雅琼, 张建军, 李梁, 等. 祁连山区典型草地生态系统土壤抗冲性影响因子[J]. 生态学报, 2018, 38(1): 122-131. |
[41] | [ Wang Yaqiong, Zhang Jianjun, Li Liang, et al. Analysis of factors impacting soil anti-scourability of typical grassland ecosystems on the Qilian Mountains[J]. Acta Ecologica Sinica, 2018, 38(1): 122-131. ] |
[42] | 赵忠, 李鹏. 渭北黄土高原主要造林树种根系分布特征及抗旱性研究[J]. 水土保持学报, 2002, 16(1): 96-99, 107. |
[42] | [ Zhao Zhong, Li Peng. Researches on vertical root distributions and drought resistance of main planting tree species in Weibei Loess Plateau[J]. Journal of Soil and Water Conservation, 2002, 16(1): 96-99, 107. ] |
[43] | 陈宇轩, 张飞岳, 高广磊, 等. 科尔沁沙地樟子松人工林土壤粒径分布特征[J]. 干旱区地理, 2020, 43(4): 1051-1058. |
[43] | [ Chen Yuxuan, Zhang Feiyue, Gao Guanglei, et al. Soil particle size distribution of Pinus sylvestris var. mongolica plantations in the Horqin Sandy Land[J]. Arid Land Geography, 2020, 43(4): 1051-1058. ] |
[44] | 刘小娥, 苏世平, 李毅, 等. 黄土高原地区人工林营造-混交林模式生态效益研究[J]. 干旱区研究, 2021, 38(2): 380-391. |
[44] | [ Liu Xiao’e, Su Shiping, Li Yi, et al. Study on the ecological benefits of a plantation mixed forest model in the Loess Plateau[J]. Arid Zone Research, 2021, 38(2): 380-391. ] |
[45] | 刘欣, 彭道黎, 邱新彩. 华北落叶松不同林型土壤理化性质差异[J]. 应用与环境生物学报, 2018, 24(4): 735-743. |
[45] | [ Liu Xin, Peng Daoli, Qiu Xincai. Differences in soil physicochemical properties between different forest types of Larix principis-rupprechtii[J]. Journal of Applied Environmental Biology, 2018, 24(4): 735-743. ] |
[46] | 杜满义, 张连金, 裴顺祥, 等. 不同类型油松混交林土壤物理特性[J]. 生态学杂志, 2020, 39(11): 3588-3595. |
[46] | [ Du Manyi, Zhang Lianjin, Pei Shunxiang, et al. Soil physical characteristics in different types of Pinus tabuliformis mixed forest[J]. Chinese Journal of Ecology, 2020, 39(11): 3588-3595. ] |
[47] | 刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温度的影响[J]. 生态学报, 1997, 17(5): 19-26. |
[47] | [ Liu Shaohui, Fang Jingyun. Effect factors of soil respiration and the temperature’s effects on soil respiration in the global scale[J]. Acta Ecologica Sinica, 1997, 17(5): 19-26. ] |
[48] | Zhao C L, Shao M A, Jia X X, et al. Particle size distribution of soils (0-500 cm) in the Loess Plateau, China[J]. Geoderma Regional, 2016, 7(3): 251-258. |
[49] | 孙佳佳, 王培, 王志刚, 等. 不同成土母质及土地利用对红壤机械组成的影响[J]. 长江科学院院报, 2015, 32(3): 54-58. |
[49] | [ Sun Jiajia, Wang Pei, Wang Zhigang, et al. Impact of parent material and land use type on mechanical composition of red soil[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(3): 54-58. ] |
[50] | 吕国华, 李小强, 白文波, 等. 半湿润与半干旱区黄绵土冬小麦农田土壤剖面特征研究[J]. 土壤通报, 2019, 50(5): 1033-1037. |
[50] | [ Lü Guohua, Li Xiaoqiang, Bai Wenbo, et al. Loessal soil profile properties of winter wheat field in semi-humid and semi-arid zones[J]. Chinese Journal of Soil Science, 2019, 50(5): 1033-1037. ] |
[51] | 宋洁, 春喜, 白雪梅, 等. 中国沙漠粒度分析研究综述[J]. 中国沙漠, 2016, 36(3): 597-603. |
[51] | [ Song Jie, Chun Xi, Bai Xuemei, et al. Review of grain size analysis in China desert[J]. Journal of Desert Research, 2016, 36(3): 597-603. ] |
[52] | 董莉丽, 马孝燕, 胡丹, 等. 吴起县退耕还林样地土壤粒径分布的单一和多重分形特征[J]. 干旱区资源与环境, 2015, 29(7): 111-115. |
[52] | [ Dong Lili, Ma Xiaoyan, Hu Dan, et al. Monofractal and multifractal characteristics of soil particle size distribution in sample sites of grain for green in Wuqi County[J]. Journal of Arid Land Resources and Environment, 2015, 29(7): 111-115. ] |
[53] | 赵明月, 赵文武, 刘源鑫. 不同尺度下土壤粒径分布特征及其影响因子--以黄土丘陵沟壑区为例[J]. 生态学报, 2015, 35(14): 4625-4632. |
[53] | [ Zhao Mingyue, Zhao Wenwu, Liu Yuanxin. Comparative analysis of soil particle size distribution and its influence factors in different scales: A case study in the loess hilly-gully area[J]. Acta Ecologica Sinica, 2015, 35(14): 4625-4632. ] |
[54] | 郭琦, 王新杰. 不同混交模式杉木人工林林下植被生物量与土壤物理性质研究[J]. 中南林业科技大学学报, 2014, 34(5): 70-74. |
[54] | [ Guo Qi, Wang Xinjie. Undergrowth biomass and soil physical properties under Cunninghamia lanceolata with different patterns of mixed forests[J]. Journal of Central South University of Forestry Technology, 2014, 34(5): 70-74. ] |
[55] | 谢育利, 陈云明, 唐亚坤, 等. 地表凋落物对油松、沙棘人工林土壤呼吸的影响[J]. 水土保持研究, 2017, 24(6): 52-61. |
[55] | [ Xie Yuli, Chen Yunming, Tang Yakun, et al. Impact of aboveground litterfall on soil respiration in the Pinus tabulaeformis and Hippophae rhamnoides plantations[J]. Research of Soil and Water Conservation, 2017, 24(6): 52-61. ] |
[56] | 童春元, 李钢铁, 卢立娜, 等. 杨树低效林下土壤粒径分布与分形特征[J]. 水土保持通报, 2019, 39(5): 308-315. |
[56] | [ Tong Chunyuan, Li Gangtie, Lu Lina, et al. Distribution of soil size and fractal characteristics under low-efficiency poplar forests[J]. Bulletin of Soil and Water Conservation, 2019, 39(5): 308-315. ] |
[57] | 邱捷, 王洪德, 郑一鹏, 等. 海涂围垦区不同土地利用类型土壤颗粒分形特征[J]. 农业现代化研究, 2020, 41(5): 882-888. |
[57] | [ Qiu Jie, Wang Hongde, Zheng Yipeng, et al. Fractal features of soil particles under different land uses in a coastal reclamation area[J]. Research of Agricultural Modernization, 2020, 41(5): 882-888. ] |
[58] | 魏晨辉, 沈光, 裴忠雪, 等. 不同植物种植对松嫩平原盐碱地土壤理化性质与细根生长的影响[J]. 植物研究, 2015, 35(5): 759-764. |
[58] | [ Wei Chenhui, Shen Guang, Pei Zhongxue, et al. Effects of different plants cultivation on soil physical-chemical properties and fine root growth in saline-alkaline soil in Songnen Plain, northeastern China[J]. Bulletin of Botanical Research, 2015, 35(5): 759-764. ] |
/
〈 |
|
〉 |