Earth Surface Process

Pedogenesis process of residual parent material soil in the northeast Tibetan Plateau:Taking profile Ningxia in the north of Qinghai Lake as an example

  • Liqian XIE ,
  • Chongyi E ,
  • Xia ZHAO ,
  • Ping LI ,
  • Jing ZHANG ,
  • Manping SUN ,
  • Xianbaji
Expand
  • 1. Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810001, Qinghai, China
    2. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, Qinghai, China
    3. Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810008, Qinghai, China

Received date: 2021-10-24

  Revised date: 2021-12-27

  Online published: 2022-08-11

Abstract

Residual parent materials are important in the Qinghai Lake area. However, research on the soil of plateau residual parent materials and age data are lacking at present, limiting the understanding of the evolution process of soils. Meanwhile, the study of residual parent soils (as important records of climate change) will strengthen the understanding of regional climate environment evolution. In this paper, a residual parent material profile was developed using optically stimulated luminescence (OSL), and the soil development degree was studied using the chemical index of alteration, Rb/Sr ratio, total organic carbon, and silt/clay ratio. The fluvial and lacustrine sediments and aeolian loess in the Qinghai Lake area were compared to analyze their sources using the ratios of Zr/Nb, K2O/Al2O3, and TiO2/Al2O3. The results show the following: (1) OSL dating results show that the soil in the profile NX has developed since the early Holocene. The age of the parent material at the bottom is 10.02±0.79 ka, whereas the upper soil is concentrated at 9.71-8.67 ka. The development time of the soil parent material is basically consistent with the wind sand activity period in the Qinghai Lake Basin. The parent material of the profile NX is the product of dry and cold climates. (2) Through a comparative analysis of provenance, the parent material at the bottom of the profile NX is formed by the in situ weathering of parent rock, whereas the upper part is developed by aeolian dust aggradation. The pedogenesis pattern is a mixed type of residual parent material and aeolian dust deposition. (3) The whole profile is in a weak chemical stage and a weak soil development degree, coinciding with the low chemical weathering degree and weak soil development under the background of cold and dry climates in the northeastern part of Qinghai Tibet Plateau.

Cite this article

Liqian XIE , Chongyi E , Xia ZHAO , Ping LI , Jing ZHANG , Manping SUN , Xianbaji . Pedogenesis process of residual parent material soil in the northeast Tibetan Plateau:Taking profile Ningxia in the north of Qinghai Lake as an example[J]. Arid Land Geography, 2022 , 45(4) : 1146 -1154 . DOI: 10.12118/j.issn.1000-6060.2021.492

References

[1] 黄昌勇, 徐建民. 土壤学[M]. 第三版. 北京: 中国农业出版社, 2010: 80-96.
[1] [ Huang Changyong, Xu Jianmin. Soil science[M]. 3rd ed. Beijing: China Agriculture Press, 2010: 80-96. ]
[2] 鄂崇毅, 张晶, 吴成永, 等. 青海湖流域草甸土光释光年代学研究[J]. 土壤学报, 2018, 55(6): 1325-1335.
[2] [ E Chongyi, Zhang Jing, Wu Chengyong, et al. Study of chronology of the meadow soil in the Qinghai Lake Basin by means of optically stimulated luminescence[J]. Acta Pedologica Sinica, 2018, 55(6): 1325-1335. ]
[3] 林永崇, 冯金良, 张继峰, 等. 藏北高原安多地区高山草甸土的母质成因及其成土模式[J]. 山地学报, 2012, 30(6): 709-720.
[3] [ Lin Yongchong, Feng Jinliang, Zhang Jifeng, et al. Origin of parentmaterials and pedogensis of alpine meadow soils in Amdo, northern Tibetan Plateau[J]. Journal of Mountain Science, 2012, 30(6): 709-720. ]
[4] Feng J L, Hu H P, Chen F. An eolian deposit: Buried soil sequence in an alpine soil on the northern Tibetan Plateau: Implications for climate change and carbon sequestration[J]. Geoderma, 2016, 266: 14-24.
[5] Zhang J, E C Y, Wu C Y, et al. An alpine meadow soil chronology based on OSL and radiocarbon dating, Qinghai Lake, northeastern Tibetan Plateau[J]. Quaternary International, 2020, 562: 35-45.
[6] E C Y, Zhang J, Chen Z Y, et al. High resolution OSL dating of aeolian activity at Qinghai Lake, northeast Tibetan Plateau[J]. Catena, 2019, 183: 104180, doi: 10.1016/j.catena.2019.104180.
[7] 丁之勇, 鲁瑞洁, 刘畅, 等. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-292.
[7] [ Ding Zhiyong, Lu Ruijie, Liu Chang, et al. Temporal change characteristics of climatic and its relationships with atmospheric circulation patterns in Qinghai Lake Basin[J]. Advances in Earth Science, 2018, 33(3): 281-292. ]
[8] 青海省农业资源区划办公室. 青海土壤[M]. 北京: 中国农业出版社, 1997: 55-262.
[8] [Office of Agricultural Resources and Regional Planning in Qinghai Province. The soil of Qinghai[M]. Beijing: China Agriculture Press, 1997: 55-262. ]
[9] 青海省地方志编纂委员会. 青海省志: 青海湖志[M]. 西宁: 青海人民出版社, 1998: 41-44.
[9] [Ditorial Board of Local Chronicles of Qinghai Province. Qinghai Province Local Chronicles: Qinghai Lake records[M]. Xining: Qinghai People’s Publishing House, 1998: 41-44. ]
[10] 曾方明, 薛红盼. 青藏高原东北部晚第四纪黄土-古土壤的元素组成及其物源指示[J]. 中国沙漠, 2020, 40(6): 105-117.
[10] [ Zeng Fangming, Xue Hongpan. Elemental compositions of the Late Quaternary loess paleosol on the northeastern Qinghai-Tibet Plateau and their implications for provenance[J]. Journal of Desert Research, 2020, 40(6): 105-117. ]
[11] E C Y, Sohbati R, Murray A S, et al. Hebei loess section in the Anyemaqen Mountains, northeast Tibetan Plateau: A high-resolution luminescence chronology[J]. Boreas, 2018, 47(4): 1170-1183.
[12] Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1): 57-73.
[13] Murray A S, Wintle A G. The single aliquot regenerative dose protocol: Potential for improvements in reliability[J]. Radiation Measurements, 2003, 37(4): 377-381.
[14] Guérin G, Mercier N, Nathan R, et al. On the use of the infinite matrix assumption and associated concepts: A critical review[J]. Radiation Measurements, 2012, 47(9): 778-785.
[15] Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations[J]. Pergamon, 1994, 23(2-3): 497-500.
[16] 鹿化煜, 安芷生. 前处理方法对黄土沉积物粒度测量影响的实验研究[J]. 科学通报, 1997, 42(23): 2535-2538.
[16] [ Lu Huayu, An Zhisheng. Experimental study of pretreatment methodson the measurement of grain size distribution of loess sediment[J]. Chinese Science Bulletin, 1997, 42(23): 2535-2538. ]
[17] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 99-109.
[17] [ Chi Qinghua, Yan Mingcai. Data manual of applied geochemical element abundance[M]. Beijing: Geological Press, 2007: 99-109. ]
[18] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[19] 徐小涛, 邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报, 2018, 20(3): 515-522.
[19] [ Xu Xiaotao, Shao Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeography, 2018, 20(3): 515-522. ]
[20] 陈旸, 陈骏, 刘连文, 等. 近13万年来黄土高原Rb/Sr记录与夏季风时空变迁[J]. 中国科学(D辑: 地球科学), 2003(6): 513-519.
[20] [ Chen Yang, Chen Jun, Liu Lianwen, et al. Rb/Sr records on the Loess Plateau and temporal and spatial changes of summer monsoon in recent 130000 years[J]. Science in China (Series D: Geoscience), 2003(6): 513-519. ]
[21] 王攀, 宁凯, 石迎春, 等. 吴起全新世土壤剖面常量元素地球化学特征[J]. 土壤通报, 2019, 50(6): 1261-1268.
[21] [ Wang Pan, Ning Kai, Shi Yingchun, et al. Geochemical characteristics of major elements of Holocene soil from Wuqi, Shaanxi Province[J]. Chinese Journal of Soil Science, 2019, 50(6): 1261-1268. ]
[22] 顾兆炎. 中国北方风成堆积的风化作用和环境变迁U-Th、10Be及元素地球化学的研究[D]. 北京: 中国科学院地质与地球物理研究所, 1999.
[22] [ Gu Zhaoyan. Weathering histories of Chinese dust deposits based on uranium and thorium series nuclides cosmogenic 10Be, and major elements[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1999. ]
[23] 郝青振. 陇西盆地晚第三纪风尘沉积的地层学研究[D]. 北京: 中国科学院地质与地球物理研究所, 2001.
[23] [ Hao Qingzhen. Stratigraphical study on the Late Tertiary eolian deposit in western Loess Plateau, northern China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2001. ]
[24] 张虎才. 元素表生地球化学特征及理论基础[M]. 兰州: 兰州大学出版社, 1997: 2-11.
[24] [ Zhang Hucai. Characteristics and theoretical basis of element supergene geochemistry[M]. Lanzhou: Lanzhou University Press, 1997: 2-11. ]
[25] Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China[J]. Quaternary Science Reviews, 2010, 29(23): 3317-3326.
[26] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[27] 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544.
[27] [ Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical index of alteration) and its application in the neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544. ]
[28] 余平辉, 马锦龙, 廖建波, 等. 柴达木盆地昆北地区路乐河组/下干柴沟组泥岩地层地球化学特征及古环境意义[J]. 干旱区地理, 2020, 43(3): 679-686.
[28] [ Yu Pinghui, Ma Jinlong, Liao Jianbo, et al. Geochemistry and paleoenvironment significance of Lulehe Formation/Xiaganchaigou Formation located in the north area of Qaidam Basin[J]. Arid Land Geography, 2020, 43(3): 679-686. ]
[29] 范小露, 张新毅, 田明中. 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021, 44(2): 409-417.
[29] [ Fan Xiaolu, Zhang Xinyi, Tian Mingzhong. Geochemical characteristics and paleoclimatic significance of the last glacial sediments in the southeastern margin of Badain Jaran Desert[J]. Arid Land Geography, 2021, 44(2): 409-417. ]
[30] Chen J, An Z S, Wang Y J, et al. Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka[J]. Science in China Series D: Earth Sciences, 1999, 42(3): 225-232.
[31] 张彭熹, 张保珍, 钱桂敏, 等. 青海湖全新世以来古环境参数的研究[J]. 第四纪研究, 1994, 14(3): 225-238.
[31] [ Zhang Pengxi, Zhang Baozhen, Qian Guimin, et al. The study of paleoclimate parameter of Qinghai Lake since Holocene[J]. Quaternary Sciences, 1994, 14(3): 225-238. ]
[32] Liu X J, Lai Z P, Madsen D, et al. Last deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai-Tibetan Plateau[J]. Journal of Quaternary Science, 2015, 30(3), 245-257.
[33] 陈克造, Bowler J M, Kelts K. 四万年来青藏高原的气候变迁[J]. 第四纪研究, 1990, 10(1): 21-31.
[33] [ Chen Kezao, Bowler J M, Kelts K. Palaeoclimati evolution within the Qinghai-Xizang (Tibet) plateau in the last 40000 years[J]. Quaternary Sciences, 1990, 10(1): 21-31. ]
[34] Liu X J, Lai Z P, Yu L P, et al. Luminescence chronology of aeolian deposits from the Qinghai Lake area in the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications[J]. Quaternary Geochronology, 2012(10): 37-43.
[35] Hou J Z, Huang Y S, Zhao J T, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2016, 43(3): 1323-1330.
[36] Chen F H, Zhang J F, Liu J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review[J]. Quaternary Science Reviews, 2020, 243: 106444, doi: 10.1016/j.quascirev.2020.106444.
[37] 朱显谟. 论原始土壤的成土过程[J]. 水土保持研究, 1995, 2(4): 83-89.
[37] [ Zhu Xianmo. On the soil forming process of primitive soil[J]. Research of Soil and Water Conservation, 1995, 2(4): 83-89. ]
[38] Chen J, Blume H P. Rock-weathering by lichens in Antarctic: Patterns and mechanisms[J]. Journal of Geographical Sciences, 2002, 12(4): 387-396.
[39] 闫文亭, 鄂崇毅, 姜莹莹, 等. 基于光释光测年的共和盆地风沙活动历史研究[J]. 盐湖研究, 2019, 27(1): 28-38.
[39] [ Yan Wenting, E Chongyi, Jiang Yingying, et al. Study on the history of eolian sand activities in Gonghe Basin based on OSL dating[J]. Journal of Saltlake Research, 2019, 27(1): 28-38. ]
[40] Zhang J R, Liu Q, Yang L H, et al. Regional hydroclimates regulate the Holocene aeolian accumulation processes of the Qinghai Lake Basin on the northeastern Tibetan Plateau[J]. Catena, 2022, 210: 105866, doi: 10.1016/j.catena.2021.105866.
[41] 张晶, 鄂崇毅, 赵亚娟. 青海湖黑马河黄土的高密度光释光测年[J]. 地球环境学报, 2018, 9(6): 557-568.
[41] [ Zhang Jing, E Chongyi, Zhao Yajuan. A high density optically stimulated luminescence(OSL) dating at Heima He loess section in Qinghai Lake area[J]. Journary of Earth Environment, 2018, 9(6): 557-568. ]
Outlines

/