Biology and Environment

Spatiotemporal analysis of net primary productivity for natural grassland in Xinjiang in the past 20 years

  • Chunbo CHEN ,
  • Gangyong LI ,
  • Jian PENG
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. Joint Laboratory for Remote Sensing Monitoring of Grassland Ecosystem in Arid Area, Xinjiang Grassland Technical Promotion Station, Urumqi 830049, Xinjiang, China

Received date: 2021-07-02

  Revised date: 2021-09-29

  Online published: 2022-04-02

Abstract

This study investigates the spatiotemporal dynamics of natural grassland NPP and its response to climatic change in Xinjiang Uygur Autonomous Region, China from 2000 to 2018, based on MOD17A3HGF NPP data and related auxiliary datasets (e.g., temperature and precipitation). The different spatial scales (in whole Xinjiang, northern and southern Xinjiang, various prefectures, and different natural grassland types, respectively), inter-annual changes, trend analysis, and partial correlation analysis were adopted to characterize grassland NPP variation. The results illustrate that grassland NPP showed an increased volatility trend from 2000 to 2018, and the mean average of NPP is 0.103 kg C·m-2. In terms of spatial pattern, it decreases gradually from the western mountains of Junggar, Ili River Valley, Tianshan Mountains, and Altay Mountains to the Junggar and Tarim Basin. Although the grassland NPP of northern Xinjiang (0.149 kg C·m-2) is higher than that of southern Xinjiang (0.055 kg C·m-2), its inter-annual fluctuations are greater than that of southern Xinjiang. Grassland NPP in the entire state shows an increasing trend, but the inter-annual changes are distinct. The NPP of 11 natural grassland types (except for alpine deserts) is increasing; however, there are big differences in variable grassland types. Therefore, it is beneficial to the growth of grassland vegetation after 2000 that the warming-wetting trend and mitigation of human interference in Xinjiang. However, anomalies of inter-annual precipitation result in the inter-annual fluctuations of grassland NPP.

Cite this article

Chunbo CHEN , Gangyong LI , Jian PENG . Spatiotemporal analysis of net primary productivity for natural grassland in Xinjiang in the past 20 years[J]. Arid Land Geography, 2022 , 45(2) : 522 -534 . DOI: 10.12118/j.issn.1000–6060.2021.300

References

[1] 张利, 周广胜, 汲玉河, 等. 中国草地碳储量时空动态模拟研究[J]. 中国科学: 地球科学, 2016, 46(10):1392-1405.
[1] [ Zhang Li, Zhou Guangsheng, Ji Yuhe, et al. Spatiotemporal dynamic simulation of grassland carbon storage in China[J]. Scientia Sinica (Terrae), 2016, 46(10):1392-1405. ]
[2] 赵鹏, 陈桃, 王茜, 等. 气候变化和人类活动对新疆草地生态系统NPP影响的定量分析[J]. 中国科学院大学学报, 2020, 37(1):51-62.
[2] [ Zhao Peng, Chen Tao, Wang Qian, et al. Quantitative analysis of the impact of climate change and human activities on grassland ecosystem NPP in Xinjiang[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1):51-62. ]
[3] Costanza R, Michael M. What is a healthy ecosystem?[J]. Aquatic Ecology, 1999, 33(1):105-115.
[4] Wu J G. Urban ecology and sustainability: The state-of-the-science and future directions[J]. Landscape and Urban Planning, 2014, 125:209-221.
[5] 邬建国, 郭晓川, 杨稢, 等. 什么是可持续性科学?[J]. 应用生态学报, 2014, 25(1):1-11.
[5] [ Wu Jianguo, Guo Xiaochuan, Yang Yu, et al. What is sustainability science?[J]. Chinese Journal of Applied Ecology, 2014, 25(1):1-11. ]
[6] 陈卓奇, 邵全琴, 刘纪远, 等. 基于MODIS的青藏高原植被净初级生产力研究[J]. 中国科学: 地球科学, 2012, 42(3):402-410.
[6] [ Chen Zhuoqi, Shao Quanqin, Liu Jiyuan, et al. Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibetan Plateau, based on MODIS remote sensing data[J]. Scientia Sinica(Terrae), 2012, 42(3):402-410. ]
[7] 李博, 赵斌, 彭容豪. 陆地生态系统生态学原理[M]. 北京: 高等教育出版社, 2005.
[7] [ Li Bo, Zhao Bin, Peng Ronghao. Principles of terrestrial ecosystem ecology[M]. Beijing: Higher Education Press, 2005. ]
[8] 陈宸, 井长青, 邢文渊, 等. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3):1-14.
[8] [ Chen Chen, Jing Changqing, Xing Wenyuan, et al. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang[J]. Acta Prataculturae Sinica, 2021, 30(3):1-14. ]
[9] 杨峰, 钱育蓉, 李建龙, 等. 天山北坡典型荒漠草地退化特征及其成因[J]. 自然资源学报, 2011, 26(8):1306-1314.
[9] [ Yang Feng, Qian Yurong, Li Jianlong, et al. Degradation characteristics and causes of desert grassland in the northern Tianshan Mountains[J]. Journal of Natural Resources, 2011, 26(8):1306-1314. ]
[10] 徐文轩, 连仲民, 徐婷, 等. 新疆准噶尔盆地荒漠草地水源圈植物群落退化格局[J]. 生态学杂志, 2016, 35(1):104-110.
[10] [ Xu Wenxuan, Lian Zhongmin, Xu Ting, et al. Degradation pattern of desert steppe plant community around a piosphere in Junggar Basin of Xinjiang[J]. Chinese Journal of Ecology, 2016, 35(1):104-110. ]
[11] 陈佼, 张丽. 天山北坡草地盖度高光谱遥感估算[J]. 草业科学, 2017, 34(1):30-39.
[11] [ Chen Jiao, Zhang Li. Estimating grassland coverage based on hyperspectral remote sensing in the northern Tianshan Mountains[J]. Pratacultural Science, 2017, 34(1):30-39. ]
[12] 周李磊, 朱华忠, 钟华平, 等. 新疆伊犁地区草地土壤容重空间格局分析[J]. 草业学报, 2016, 25(1):64-75.
[12] [ Zhou Lilei, Zhu Huazhong, Zhong Huaping, et al. Spatial analysis of soil bulk density in Yili, Xinjiang Uygur Autonomous Region[J]. Acta Prataculturae Sinica, 2016, 25(1):64-75. ]
[13] 闫俊杰, 刘海军, 赵玉, 等. 2000—2015年新疆伊犁河谷草地NPP时空变化特征[J]. 水土保持研究, 2018, 25(5):390-396.
[13] [ Yan Junjie, Liu Haijun, Zhao Yu, et al. Spatiotemporal dynamics of grassland net primary productivity in Ili River Valley from 2000 to 2015[J]. Research of Soil and Water Conservation, 2018, 25(5):390-396. ]
[14] 任璇, 郑江华, 穆晨, 等. 新疆近15年草地NPP动态变化与气象因子的相关性研究[J]. 生态科学, 2017, 36(129):43-51.
[14] [ Ren Xuan, Zheng Jianghua, Mu Chen, et al. Correlation analysis of the spatial-temporal variation of grassland net primary productivity and climate factors in Xinjiang in the past 15 years[J]. Ecological Science, 2017, 36(129):43-51. ]
[15] 闫俊杰, 刘海军, 崔东, 等. 近15年新疆伊犁河谷草地退化时空变化特征[J]. 草业科学, 2018, 35(296):508-520.
[15] [ Yan Junjie, Liu Haijun, Cui Dong, et al. Spatiotemporal dynamics of grassland degradation in Yili Valley of Xinjiang over the last 15 years[J]. Pratacultural Science, 2018, 35(296):508-520. ]
[16] Duan H, Zhao H, Jiang Y, et al. Analysis of seasonal grassland change and its drivers during 1982—2006 in Xinjiang[J]. Rangeland Ecology & Management, 2017, 70(4):422-429.
[17] Zhang W, Yang X, Manlike A, et al. Comparative study of remote sensing estimation methods for grassland fractional vegetation coverage: A grassland case study performed in Ili Prefecture, Xinjiang, China[J]. International Journal of Remote Sensing, 2019, 40(5):2243-2258.
[18] 蔡宗磊, 苗正红, 常雪, 等. 基于无人机大样方数据及国产卫星反演草地植被覆盖度方法研究[J]. 草地学报, 2019, 27(5):1431-1440.
[18] [ Cai Zonglei, Miao Zhenghong, Chang Xue, et al. Research on grassland fractional vegetation coverage inversion method based on drone large quadrat data and domestic satellite[J]. Acta Agrestia Sinica, 2019, 27(5):1431-1440. ]
[19] 郭阳, 贾志斌, 张琪, 等. 基于遥感数据的内蒙古呼伦贝尔草原草畜平衡时空动态研究[J]. 中国草地学报, 2021, 43(4):30-37.
[19] [ Guo Yang, Jia Zhibin, Zhang Qi, et al. Study on the spatiotemporal dynamics of forage-livestock balance in Hulunbuir grassland of Inner Mongolia based on remote sensing data[J]. Chinese Journal of Grassland, 2021, 43(4):30-37. ]
[20] Shi Y, Gao J, Li X, et al. Improved estimation of aboveground biomass of disturbed grassland through including bare ground and grazing intensity[J]. Remote Sensing, 2021, 13, 2105, doi: 10.3390/rs13112105.
[21] 孙世泽, 汪传建, 尹小君, 等. 无人机多光谱影像的天然草地生物量估算[J]. 遥感学报, 2018, 22(5):848-856.
[21] [ Sun Shize, Wang Chuanjian, Yin Xiaojun, et al. Estimating aboveground biomass ofnatural grassland based on multispectral images of unmanned aerial vehicles[J]. Journal of Remote Sensing, 2018, 22(5):848-856. ]
[22] 荀其蕾, 董乙强, 安沙舟, 等. 基于MOD 09GA数据的新疆草地生长状况遥感监测研究[J]. 草业学报, 2018, 27(4):10-26.
[22] [ Xun Qilei, Dong Yiqiang, An Shazhou, et al. Monitoring of grassland herbage accumulation by remote sensing using MOD 09GA data in Xinjiang[J]. Acta Prataculturae Sinica, 2018, 27(4):10-26. ]
[23] 张仁平, 郭靖, 张云玲. 新疆草地净初级生产力(NPP)空间分布格局及其对气候变化的响应[J]. 生态学报, 2020, 40(15):5318-5326.
[23] [ Zhang Renping, Guo Jing, Zang Yunling. Spatial distribution pattern of NPP of Xinjiang grassland and its response to climatic changes[J]. Acta Ecologica Sinica, 2020, 40(15):5318-5326. ]
[24] 杜梦洁, 郑江华, 任璇, 等. 地形对新疆昌吉州草地净初级生产力分布格局的影响[J]. 生态学报, 2018, 38(13):4789-4799.
[24] [ Du Mengjie, Zheng Jianghua, Ren Xuan, et al. Effects of topography on the distribution pattern of net primary productivity of grassland in Changji Prefecture, Xinjiang[J]. Acta Ecologica Sinica, 2018, 38(13):4789-4799. ]
[25] 任璇, 郑江华, 穆晨, 等. 不同气象插值方法在新疆草地NPP估算中的可靠性评价[J]. 草业科学, 2017, 34(3):439-448.
[25] [ Ren Xuan, Zheng Jianghua, Mu Chen, et al. Evaluating reliability of grassland net primary productivity estimates using different meteorological interpolation methods[J]. Pratacultural Science, 2017, 34(3):439-448. ]
[26] Jiang Y, Guo J, Peng Q, et al. The effects of climate factors and human activities on net primary productivity in Xinjiang[J]. International Journal of Biometeorology, 2020, 64(1):765-777.
[27] 郭燕云, 刘艳, 李秋月, 等. CENTURY模型在新疆天山山区的适用性分析[J]. 草地学报, 2020, 28(1):252-258.
[27] [ Guo Yanyun, Liu Yan, Li Qiuyue, et al. Validation and adaptability evaluation of grassland ecosystem model CENTURY in the Tianshan Mountain area[J]. Acta Agrestia Sinica, 2020, 28(1):252-258. ]
[28] 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5):506-518.
[28] [ Huang Xiaotao, Luo Geping. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang[J]. Chinese Journal of Plant Ecology, 2017, 41(5):506-518. ]
[29] 韩其飞, 罗格平, 李超凡, 等. 放牧对新疆草地生态系统碳源/汇的影响模拟研究[J]. 生态学报, 2017, 37(13):4392-4399.
[29] [ Han Qifei, Luo Geping, Li Chaofan, et al. Modeling the grazing effect of grassland on the carbon source/sink in Xinjiang[J]. Acta Ecologica Sinica, 2017, 37(13):4392-4399. ]
[30] 杨静雅, 李新国, 闫凯, 等. 基于NDVI的新疆和静县草地植被覆盖动态变化及其与气温降水的关系[J]. 生态科学, 2018, 37(6):38-44.
[30] [ Yang Jingya, Li Xinguo, Yan Kai, et al. Grassland vegetation dynamics and the relationship between the temperature and precipitation in Hejing County, Xinjiang, based on NDVI[J]. Ecological Science, 2018, 37(6):38-44. ]
[31] Zhang R, Liang T, Guo J, et al. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014[J]. Scientific Reports, 2018, 8(1):1-11.
[32] Zhang R, Guo J, Yin G. Response of net primary productivity to grassland phenological changes in Xinjiang, China[J]. Peerj, 2021, 9(1):e10650, doi: 10.7717/peerj.10650.
[33] 刘嘉麒, 李泽椿, 秦小光. 新疆地区自然环境演变、气候变化及人类活动影响[M]. 北京: 中国水利水电出版社, 2014.
[33] [ Liu Jialqi, Li Zechun, Qin Xiaoguang. The evolution of the natural environment, climate change and the impact of human activities in Xinjiang[M]. Beijing: China Water Conservancy and Hydropower Press, 2014. ]
[34] 杨利普. 新疆水资源及其利用[M]. 乌鲁木齐: 新疆人民出版社, 1981.
[34] [ Yang Lipu. Xinjiang water resources and utilization[M]. Urumqi: Xinjiang People’s Publishing House, 1981. ]
[35] 许鹏. 新疆草地资源及其利用[M]. 乌鲁木齐: 新疆维吾尔自治区畜牧厅/新疆科技卫生出版社, 1993.
[35] [ Xu Peng. Xinjiang grassland resources and its utilization[M]. Urumqi: Animal Husbandry Department of Xinjiang Uygur Autonomous Region/Xinjiang Science and Technology Publishing House, 1993. ]
[36] 罗麟. 新疆草地资源介绍(一)[J]. 新疆畜牧业, 1990(5):32-36.
[36] [ Luo Lin. Introduction to Xinjiang grassland resources(I)[J]. Xinjiang Xumuye, 1990(5):32-36. ]
[37] Running S, Zhao M. Mod17a3hgf Modis/terra net primary production gap-filled yearly L4 global 500m sin grid v006[J]. Nasa Eosdis Land Processes Daac. Available Online: https://doi.Org/10.5067/modis/mod17a3hgf, 2019, 6.
[38] Yang K, He J, Tang W J, et al. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2010, 150(1):38-46.
[39] He J, Yang K, Tang W, et al. The first high-resolution meteorological forcing sataset for land process studies over China[J]. Scientific Data, 2020, 7(1):1-11.
[40] Wang Q, Zhai P, Qin D. New perspectives on ‘warming-wetting’ trend in Xinjiang, China[J]. Advances in Climate Change Research, 2020, 11(3):252-260.
[41] 杨淑霞, 张文娟, 冯琦胜, 等. 基于MODIS逐日地表反射率数据的青南地区草地生长状况遥感监测研究[J]. 草业学报, 2016, 25(8):14-26.
[41] [ Yang Shuxia, Zhang Wenjuan, Feng Qisheng, et al. Monitoring of grassland herbage accumulation by remote sensing using MODIS daily surface reflectance data in the Qingnan Region[J]. Acta Prataculturae Sinica. 2016, 25(8):14-26. ]
[42] 姚俊强, 陈静, 迪丽努尔·托列吾别克, 等. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2020, 42(3):1-14.
[42] [ Yao Junqiang, Chen Jing, Tuoliwubieke Dilinuer, et al. Trend of climate and hydrology change in Xinjiang and its problems thinking[J]. Journal of Glaciology and Geocryology, 2020, 42(3):1-14. ]
[43] Sun H, Liu X. Impacts of the uplift of four mountain ranges on the arid climate and dust cycle of inland Asia[J]. Palaeogeography, 2018, 505:167-179.
[44] Zhang R, Liu P, Zhang K. Spatio-temporal characteristics of potential climate productivity of grassland and its responses to climate change in Xinjiang, China[J]. Journal of Desert Research, 2012, 32(1):181-187.
[45] An L, Hao Y, Yeh T J, et al. Annual to multidecadal climate modes linking precipitation of the northern and southern slopes of the Tianshan Mts[J]. Theoretical and Applied Climatology, 2020, 140(1):453-465.
[46] Li C, Wang R, Ning H, et al. Characteristics of meteorological drought pattern and risk analysis for maize production in Xinjiang, northwest China[J]. Theoretical and Applied Climatology, 2018, 133(3):1269-1278.
[47] Yao J, Chen Y, Zhao Y, et al. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: A case study in Xinjiang, China[J]. Theoretical and Applied Climatology, 2018, 131(3):1503-1515.
[48] 张海燕, 樊江文, 邵全琴, 等. 2000—2010年中国退牧还草工程区生态系统宏观结构和质量及其动态变化[J]. 草业学报, 2016, 25(4):1-15.
[48] [ Zhang Haiyan, Fan Jiangwen, Shao Quanqin, et al. Ecosystem dynamics in the ‘Returning Rangeland to Grassland’ programs, China[J]. Acta Prataculturae Sinica, 2016, 25(4):1-15. ]
[49] 张海燕, 樊江文, 邵全琴. 2000—2010年中国退牧还草工程区土地利用/覆被变化[J]. 地理科学进展, 2015, 34(7):840-853.
[49] [ Zhang Haiyan, Fan Jiangwen, Shao Quanqin. Land use/land cover change in the grassland restoration program areas in China, 2000—2010[J]. Progress in Geography, 2015, 34(7):840-853. ]
[50] 胡振通, 孔德帅, 魏同洋, 等. 草原生态补偿: 减畜和补偿的对等关系[J]. 自然资源学报, 2015, 30(11):1846-1859.
[50] [ Hu Zhentong, Kong Deshuai, Wei Tongyang, et al. Grassland eco-compensation equivalent relationship between livestock reduction and compensation[J]. Journal of Natural Resources, 2015, 30(11):1846-1859. ]
[51] Liu Y, Wang Q, Zhang Z, et al. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013[J]. Science of the Total Environment, 2019, 690:27-39.
[52] Naeem S, Zhang Y, Tian J, et al. Quantifying the impacts of snthropogenic sctivities and climate variations on vegetation productivity changes in China from 1985 to 2015[J]. Remote Sensing, 2020, 12(7):1113, doi: 10.3390/rs12071113.
[53] 李伟. 新疆实施草原生态保护补助奖励机制初期成效研究[J]. 新疆畜牧业, 2015, 220(10):22-27.
[53] [ Li Wei. Study on the initial effectiveness of Xinjiang’s implementation of grassland ecological protection subsidy and reward mechanism[J]. Xinjiang Xumuye, 2015, 220(10):22-27. ]
[54] 姜萍, 丁文广, 肖静, 等. 新疆植被NPP及其对气候变化响应的海拔分异[J]. 干旱区地理, 2021, 44(3):849-857.
[54] [ Jiang Ping, Ding Wenguang, Xiao Jing, et al. Altitudinal difference of vegetation NPP and its response to climate change in Xinjiang[J]. Arid Land Geography, 2021, 44(3):849-857. ]
[55] 谢大伟, 张诺, 苏颖, 等. 深度贫困地区易地扶贫搬迁产业发展模式及制约因素分析——以新疆南疆三地州为例[J]. 干旱区地理, 2020, 43(5):1401-1408.
[55] [ Xie Dawei, Zhang Nuo, Su Ying, et al. Industial development modes and restraining factors of severe poverty region after resident relocation for poverty alleviation: Cases of three prefectures in south Xinjiang[J]. Arid Land Geography, 2020, 43(5):1401-1408. ]
Outlines

/