Progress of research on soil carbon cycle using carbon isotope approach
XU Wen-qiang,CHEN Xi,LUO Ge-ping,FENG Yi-xing
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, Xinjiang, China
[1] CANADELL J C,KIRSCHBAUM M,KURZ W,et al. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks[J]. Environment and Science Policy,2007,370-384.[2] FENG Z D,WANG L X,JI Y H,et al. Climatic dependency of soil organic carbon isotopic composition along the S-N transect from 34°N to 52°N in central-east Asia[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2008,257:335-343.[3] MARICLE B R,ZWENGERA S R,LEE R W. Carbon,nitrogen,and hydrogen isotope ratios in creekside trees in western Kansas[J]. Environmental and Experimental Botany,2011,71:1-9.[4] LU H Y,ZHOU Y L,LIU W G,et al. Organic stable carbon isotopic composition reveals late Quaternary vegetation changes in the dune fields of northern China[J]. Quaternary Research,2012,77:433-444.[5] LIU W G,FENG X H,NING Y F,et al. δ13C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China[J]. Global Change Biology,2005,11:1094-1100.[6] WANG G,FENG X,HAN J,et al. Paleovegetation reconstruction using δ13C of soil organic matter[J]. Biogeosciences,2008,5:1325-1337.[7] ANDREEVA D B,ZECH M,GLASER B,et al. Stable isotope (δ13C,δ15N,δ18O) record of soils in Buryatia,southern Siberia:Implications for biogeochemical and paleoclimatic interpretations[J]. Quaternary International,2013,290-291:82-94.[8] PAN G,GUO T. Pedogenic carbonates in aridic soils of China and significance for terrestrial carbon transfer[M]// KIMBLE J,ESWARAN H,eds. Global climate change and pedogenic carbonates. New York:Lewis Publishers,1999,135-148.[9] STEVENSON B A,KELLY E F,MCDONALD E V,et al. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along bioclimatic gradient in the Palouse region,Washington State,USA[J]. Geoderma,2005,124:37-47.[10] LI H C,LEE Z H,WANA N J,et al. The δ18O and δ13C records in an aragonite stalagmite from Furong Cave,Chongqing,China:A-2000-year record of monsoonal climate[J]. Journal of Asian Earth Sciences,2011,40:1121-1130.afsdfsdfg[13] 杨藜芳,李贵桐,李保国. 土壤发生性碳酸盐碳稳定同位素模型及其应用[J]. 地球科学进展,2006,21(9):973-981.[14] XIE J X,LI Y,ZHAI C X. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology,2008,56(5):953-961.[15] CATONI M,FALSONE G,BONIFACIO E. Assessing the origin of carbonates in a complex soil with a suite of analytical methods[J]. Geoderma,2012,175-176:47-57.[16] CERLING T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters,1984,71:229-240.[17] FENG X. & EPSTEIN S. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentrations[J]. Geochimica et Cosmochimica Acta,1995,59:2599-2608.[18] 刘卫国,宁有丰,安芷生,等. 黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J]. 中国科学(D辑),2002,32(10):830-836.[19] BOUTTON T W,ARCHER S R,MIDWOOD A J,et al. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem[J]. Geoderma,1998,82:5-41.[20] KRAIMER R A,MONGER H C. Carbon isotopic subsets of soil carbonate:A particle size comparison of limestone and igneous parent materials[J]. Geoderma,2009,150:1-9.[21] ZHANG Y H,DING W X,LUO J F,et al. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora[J]. Soil Biology & Biochemistry,2010,42:1712-1720.[22] 王国安. 稳定碳同位素在第四纪古环境研究中的应用[J]. 第四纪研究,2003,23(5):472-484.[23] 于贵瑞,王绍强,陈泮勤,等. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展,2005,20(5):568-577.[24] JAGADAMMA S,LAL R. Integrating physical and chemical methods for isolating stable soil organic carbon[J]. Geoderma,2010,158:322330.[25] YAO Z Q,XIAO G Q,WU H B,et al. Plio-Pleistocene vegetation changes in the North China Plain:Magnetostratigraphy,oxygen and carbon isotopic composition of pedogenic carbonates[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2010,297:502- 510.[26] BIEDENBENDER S H,MCCLARAN M P,QUADE J,et al. Landscape patterns of vegetation change indicated by soil carbon isotope composition[J]. Geoderma,2004,119:69-83.[27] SIEGENTHALER U,STOCKER T F,MONNIN E,et al. Stable carbon cycle-climate relationship during the Late Pleistocene[J]. Science,2005,310:1313-1317.[28] PESSENDA L C R,GOUVEIA S E M,RIBEIRO A S,et al. Late Pleistocene and Holocene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal records in soils[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2010,297:597-608.[29] BEACH T,LUZZADDER-BEACH S,TERRY R,et al. Carbon isotopic ratios of wetland and terrace soil sequences in the Maya Lowlands of Belize and Guatemala[J]. Catena,2011,85:109- 118.asfdfafdfsadg[32] LIU W G,XING M. Isotopic indicators of carbon and nitrogen cycles in river catchments during soil erosion in the arid Loess Plateau of China[J]. Chemical Geology,2012,296-297:66-72.[33] 王丽霞,汪卫国,李心清,等. 中国北方干旱半干旱区表土的有机质碳同位素、磁化率与年降水量的关系[J]. 干旱区地理,2005,28(3):311-315.[34] TROLIER M,WHITE J W C,TANS P P,et al. Monitoring the isotopic composition of atmospheric CO2:Measurements from the NOAA Global Air Sampling Network[J]. Journal of Geophysical Research,1996,101:25897-25916.[35] EHLERINGER J R,BUCHMANN N,FLANAGAN L B. Carbon isotope ratios in belowground carbon cycle process[J]. Ecological Application,2000,10:412-422.[36] 朴河春,朱建明,余登利,等. 贵州山区土壤微生物生物量的碳同位素组成与有机碳同位素效应[J]. 第四纪研究,2003,23(5):546-556.[37] 于天仁,陈志诚. 土壤发生中的化学过程[M]. 北京:科学出版社,1990:336-365.[38] 潘根兴. 中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义Ⅲ[J]. 南京农业大学学报,1999,22(1):52-57.[39] 杨黎芳,李贵桐. 土壤无机碳研究进展[J]. 土壤通报,2011,42(4):986-990.[40] SCHLESINGER W H. Carbon storage in the caliche of the arid world:a case study from Arizona[J]. Soil Science,1982,133:247-255.[41] BATJES N H. Total carbon and nitrogen in soils of the world[J]. European Journal of Soil Science,1996,47:151-163.[42] ESWARAN H, E VAN DEN BERG,REICP P,et a1. Global soil carbon resources[C] // LAL R,KIMBLE J,LEVINE E,et al. Soils and globe change:Advances in soll science. Boca Raton FL:CRC Press,1995:27-44.[43] 秦小光,李长生,蔡炳贵. 气候变化对黄土碳库效应影响的敏感性研究[J]. 第四纪研究,2001,21(2):153-161.[44] WANG Y G,LI Y,YE X H,et al. Profile storage of organic/inorganic carbon in soil:Form forest to desert[J]. Science of the Total Environment,2010,408:1925-1931.[45] 王玉刚,王忠媛,李彦. 干旱区盐碱土剖面无机碳组分分布特征[J]. 干旱区地理,2013,36(4):631-636.[46] JIN L X,OGRINC N,HAMILTON S K,et al. Inorganic carbon isotope systematics in soil profiles undergoing silicate and carbonate weathering (Southern Michigan,USA)[J]. Chemical Geology,2009,264:139-153.[47] 许文强,陈曦,罗格平,等. 土壤碳循环研究进展及干旱区土壤碳循环研究展望[J]. 干旱区地理,2011,34 (4):614-620.[48] WERTHA M,KUZYAKOV Y. Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C[J]. Soil Biology & Biochemistry,2008,40:625-637.[49] CHEN H Q,FANA M S,BILLEN N,et al. Effect of land use types on decomposition of 14C-labelled maize residue (Zea mays L.)[J]. European Journal of Soilbiology,2009,45:123-130.[50] UNGER S,MÁGUAS C,PEREIRA J S,et al. The influence of precipitation pulses on soil respiration:Assessing the “Birch effect” by stable carbon isotopes[J]. Soil Biology & Biochemistry,2010,42:1800-1810.[51] LAUDICINA V A,SCALENGHE R,PISCIOTTA A,et al. Pedogenic carbonates and carbon pools in gypsiferous soils of a semiarid Mediterranean environment in south Italy[J]. Geoderma,2013,192:31-38.[52] 陆晴,王玉刚,李彦,等. 干旱区不同土壤和作物灌溉量的无机碳淋溶特征实验研究[J]. 干旱区地理,2013,36(3):450-456.[53] MAGARITZ M,AMIEL A. Influence of intense cultivation and irrigation on soil properties in the Jordon Valley,Israel:recrystallization of carbonate minerals[J]. Soil Science Society of America Journal,1981,45(1):201-205.[54] ZANCHETTA G,VITO M D,FALLICK A E. Stable isotopes of pedogenic carbonates from the Somma-Vesuvius area,southern Italy,over the past 18 kyr:palaeoclimatic implications[J]. Journal of Quaternary Science,2000,15(8):813-824.[55] CERLING T E,SOLOMON D K,QUADE J,BOWMAN J R. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta,1991,55(11):3403-3405.[56] AMUNDSON R,STERN L,BAISDEN T,et al. The isotopic composition of soil and soil-respired CO2[J]. Geoderma,1998,82(1-3):83-114.[57] ROVIRA P,VALLEJO V R. Changes in δ13C composition of soil carbonates driven by organic matter decomposition in a Mediterranean climate:A field incubation experiment[J]. Geoderma,2008,144:517-534.[58] GILLON M,BARBECOT F,GIBERT E,et al. Controls on 13C and 14C variability in soil CO2[J]. Geoderma,2012,189-190:431-441.[59] DAVIDSON G. The stable isotopic composition and measurement of carbon in soil CO2[J]. Geochimica et Cosmochimica Acta,1995,59(12):2485-2489.[60] 张林,孙向阳,曹吉鑫,等. 荒漠草原碳酸盐岩土壤有机碳向无机碳酸盐的转移[J]. 干旱区地理,2010,33(5):732-739.[61] PAN G X,TAO Y X,SHUN Y H,et al. Some features of carbon cycling in humid subtropical karst region:an example of Guilin Yajikarst experiment site[J]. Journal of Chinese Geography,1997,7(3):48-57.[62] 乌力更,李霞,陈晓远. 全新世以来内蒙古黑垆土的历史演变[C] // 陆景冈. 土壤地质:第四辑. 北京:中国农业出版社,1997:27-32.[63] 雷文进,顾国安. 中国干旱土发生及主要诊断层划分依据[C] // 龚子同. 土壤系统分类研究,B辑:中国土壤系统分类探索. 北京:科学出版社,1992:73-98.[64] 胡双熙. 兰州地区灰钙土的发育与全新世环境变化[C] // 龚子同. 土壤环境变化. 北京:中国科学技术出版社,1992:43-45.[65] CAPO R C,CHADWICK O A. Application of strontium isotopes to the mass balance of calcium in desert soils:Eolian input vs. in-situ weathering[J]. Geological Society of America Abstract with Program,1993,25:394.[66] CHADWICK O A,EUGENE K,MERRITS D M,el a1. Carbon dioxide consumption during soil development[J]. Biogeochemistry,1994,24:115-127.[67] SCHLESINGER W,BELNAP J,MARION G. On carbon sequestration in desert ecosystems[J]. Global Change Biology,2009,15:1488-1490.[68] 陈拓,马健,冯虎元,等. 阜康典型荒漠C3植物稳定碳同位素值的环境分析[J]. 干旱区地理,2005,25(4):342-345.[69] 孙惠玲,马剑英,王绍明,等. 准噶尔盆地荒漠植物碳同位素组成研究[J]. 中国沙漠,2007,27(6):972-977. [70] 冯缨,段士民,牟书勇,等. 新疆荒漠地区C4植物的生态分布与区系分析[J]. 干旱区地理,2012,35(1):145-153.