Arid Land Geography ›› 2025, Vol. 48 ›› Issue (10): 1793-1803.doi: 10.12118/j.issn.1000-6060.2024.780
• Ecology and Environment • Previous Articles Next Articles
CHEN Chunbo1,2,3(
), LI Gangyong3,4(
), CHEN Dongbo5, ZHAO Yan3,6, PENG Jian3,4, WANG Yugang1, LI Junli1,2,3
Received:2024-12-23
Revised:2025-01-06
Online:2025-10-25
Published:2025-10-27
Contact:
LI Gangyong
E-mail:ccb_8586@ms.xjb.ac.cn;ligangyong1013@hotmail.com
CHEN Chunbo, LI Gangyong, CHEN Dongbo, ZHAO Yan, PENG Jian, WANG Yugang, LI Junli. Research progress on the ecological suitability of grassland photovoltaic ecosystem[J].Arid Land Geography, 2025, 48(10): 1793-1803.
Tab. 1
Studies of disturbances in photovoltaic parks' microhabitats"
| 数据获取 | 时间跨度 | 方法 | 研究内容 | 研究区域 |
|---|---|---|---|---|
| 土壤、植被采样与温室气体测量 | 2021/05—2021/09 | 模拟、统计 分析 | 忽视光伏阵列部署对温室气体排放的影响可能导致光伏发电对温室气体减排的贡献高估[ | 中国吉林省Honghua光伏园区(44°18′52″N,123°57′27″E),面积102 hm2,装机规模40 MW,草甸草原 |
| 土壤、植被采样、微气候与温室气体测量 | 2013/07—2014/06 | 统计分析 | 光伏园区的微气候与植被管理对草地碳循环的影响[ | 英国Westmill光伏园区(51°37′03″N, 01°38′45″W),面积1.21 hm2,装机规模5 MW,温性草甸 |
| 光伏园区内、 外对照观测 | 2017/09/26—2018/07/11 | 数学分析与可视化 | 光伏电园区对近地表气温和能量平衡的影响[ | 美国亚利桑那州Red Rock光伏园区 (32°33′16.6″N,111°17′03.7″W),面积1.62×102 hm2,装机规模40 MW,荒漠类草地 |
| 站点观测 | 2020/06/01—2020/08/31 | 数学分析与可视化 | 夏季戈壁光伏电站地表能量通量特征对比研究[ | 中国新疆五家渠光伏园区(44°24′23″N,87°39′23″E),装机规模70 MW,温性荒漠类草地 |
| 站点观测 | 2020/06/25—2020/11/29 | 数学分析与可视化 | 光伏园区对贫瘠地区气温、能量分配的影响[ | 中国新疆五家渠市,面积1.15×102 hm2,装机规模70 MW,温性荒漠类草地 |
| 站点观测、 植被采样 | 2019/06—2019/09 | 统计分析 | 光伏组件遮阴会延迟开花并增加旱地生态系统中授粉 媒介[ | 美国俄勒冈州光伏园区(42°24′N,122°50′W),装机规模10 MW |
| 气温观测 | 2014/04—2015/03 | 统计分析 | 光伏热岛效应:更大的太阳能发电厂会增加局部温度[ | 美国亚利桑那州光伏园区,荒漠类草地 |
| 土壤、植被采样,土壤水分测量与微气候观测 | 7 a | 统计分析 | 植被恢复对光伏园区土壤理化性质的影响[ | 美国科罗拉多州国家可再生能源实验室国家风能技术中心,装机规模1.1 MW,荒漠类草地 |
| 土壤采样 | 2016/03 | 土壤物理性质测量与统计分析 | 地中海气候光伏园区建设及其运营对土壤质量(理化性质)的影响[ | 法国南部光伏园区(La Calade,Pouzols-Minervois与Roquefort des Corbières) |
| 土壤采样 | 2019年8月中旬 | 样品化学性质测定与统计分析 | 光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[ | 中国青藏高原共和盆地塔拉滩(36°09′47″N,100°35′14″E),面积5.85×102 hm2,高寒荒漠类草地 |
Tab. 2
Studies of the ecological adaptability of plant communities in photovoltaic parks"
| 数据获取 | 时间跨度 | 方法 | 研究内容 | 研究区域 |
|---|---|---|---|---|
| 植被采样 | 7月底 | 土壤DNA提取、测序与统计分析 | 光伏阵列改变了草地植物生物多样性[ | 中国黑龙江光伏园区(46°10′11″N, 124°53′56″E),草甸草原 |
| Landsat影像 | 2020年 | 机器学习 | 采用Landsat、随机森林和Google Earth Engine绘制中国光伏电站地图[ | 中国 |
| 植被采样 | 2020年8月 | 数学分析与可 视化 | 光伏阵列的微气候特征及其对园区植物生长特性的影响[ | 中国青海省西宁市(31°40′~39°19′N, 89°35′~103°04′E),高寒草甸类草地 |
| 植被采样 | 2021年 | 景观统计分析 | 光伏组件遮阴对喀斯特地区植物群落结构的影响[ | 中国云南省昆明市东川光伏园区 (26°09′56″N,103°08′31″E) |
| MODIS影像 | 2010—2020年 | 时空趋势分析 | 利用MODIS卫星数据的光伏电站生态环境效应监测与评估[ | 中国青海省共和光伏园区,高寒荒漠类草地 |
| 气象观测、刈割 | 2021—2022年 | 模拟放牧、对照实验 | 光伏园区草地生产力对放牧的适应性[ | 美国科罗拉多州Jack光伏园区(40°07′18.9″N,105°07′49.9″W),荒漠类草地 |
| 植物采样、观测 | 2018—2022年 | 统计分析 | 光伏园区内花卉等植物的适应性研究[ | 美国明尼苏达州Atwater光伏园区(面积1.4 hm2,装机规模4 MW)与Atwater光伏园区(面积1.7 hm2,装机规模5.5 MW) |
Tab. 3
Adaptability of animal communities to photovoltaic parks"
| 数据获取 | 时间跨度 | 方法 | 研究内容 | 研究区域 |
|---|---|---|---|---|
| 昆虫采样、观测 | 2018—2022年 | 统计分析 | 昆虫群落在美国明尼苏达州光伏园区的适应性研究[ | 美国明尼苏达州Atwater光伏园区(面积1.4 hm2,装机规模4 MW)与Atwater光伏园区(面积1.7 hm2,装机规模5.5 MW),温性草原类 |
| 气温观测、牲畜体温传感器测量 | 12:00—15:00 | 实验、时序分析 | 光伏组件对牲畜(养牛)小气候条件的影响[ | 斯洛伐克,温性草原 |
| 气象站观测、牲畜体温记录仪测量 | 气象因子(每分钟采集)、牲畜体温(每5 min) | 实验、统计分析 | 使用光伏阵列为荷斯坦小母牛遮阳[ | 巴西,热带草原 |
| 牲畜行迹观测、气象站观测、牲畜体温测量 | 2018/04 | 实验、统计分析 | 光伏阵列作为牲畜的遮阳资源[ | 巴西圣保罗州立大学,热带草原 |
| 气象站点观测、牲畜体温测量、牲畜行迹监测 | 连续10 d (08:00—17:00) | 统计分析 | 光伏阵列的遮阳减轻了牲畜(羊)的热负荷[ | 巴西圣保罗州立大学(21°15′17″S,48°19′20″W),热带草原 |
| 鸟类调查 | 2022/04/20—2022/06/10 | 数据标准化处理与统计分析 | 光伏园区对鸟类多样性的影响研究[ | 斯洛伐克光伏园区(面积2 hm2,装机规模0.9 MW),温性草原 |
| 定点计数调查 | 2018/09/18—2018/11/01、2019/09/23—2019/11/01 | 统计分析 | 水生栖息地鸟类在美国南加州光伏园区的适应性研究[ | 加利福尼亚州河滨县Solar Ranch光伏园区(装机规模250 MW)与Seville光伏园区(装机规模50 MW),温性草原 |
Tab. 4
Adaptability of soil biomes in photovoltaic parks"
| 数据获取 | 时间跨度 | 方法 | 研究内容 | 研究区域 |
|---|---|---|---|---|
| 植被采样 | 7月底 | 土壤DNA提取、测序与统计分析 | 光伏阵列改变了草地土壤微生物多样性[ | 中国黑龙江(46°10′11″N,124°53′56″E),草甸草原 |
| 土壤取样 | 2021年7、10月 | 土壤分析、节肢动物的提取和表征与统计分析 | 光伏园区草地能否发挥保护土壤节肢动物生物多样性的作用[ | 意大利帕尔马 |
| 植被、土壤数据采集 | 2019年8月中旬 | 样品测定、DNA提取与统计分析 | 光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[ | 中国青藏高原共和盆地塔拉滩光伏园区(36°9′47″N,100°35′14″E),高寒荒漠类草地 |
| 植物群落调查与土壤采集 | 2021年8月上旬(生长季高峰期) | 土壤化学特性分析、DNA生物信息分析与统计分析 | 光伏阵列对松嫩草地土壤细菌群落组成与多样性的影响[ | 中国吉林长岭县宏华光伏园区(44°18′N,123°57′E),面积100 hm2,装机规模40 MW,草甸草原 |
Tab. 5
Biogeochemical processes of grassland photovoltaic systems"
| 数据获取 | 时间跨度 | 方法 | 研究内容 | 研究区域 |
|---|---|---|---|---|
| 植被、土壤采样 | 2022/08 | 统计分析 | 在退化草地部署光伏阵列是促进草地恢复和解决土地利用冲突的双赢策略[ | 中国吉林Honghua光伏园区(44°18′52″N,123°57′27″E),面积100 hm2,装机规模40 MW |
| 站点观测 | 2021/04/27—2021/09/06 | 模型模拟与统计分析 | 干旱区光伏阵列(组件)对陆地碳汇的影响研究[ | 中国宁夏吴忠市光伏园区(37°25′30.17″N,106°03′27.58″E),装机规模200 MW |
| 植被、土壤采样与温室气体测量 | 2021/05—2021/09 | 模拟、统计分析 | 忽视光伏阵列部署对温室气体排放的影响可能导致光伏发电对温室气体减排的贡献高估[ | 中国吉林Honghua光伏园区(44°18′52″N,123°57′27″E),面积100 hm2,装机规模40 MW |
| 植被、土壤采样,微气候与温室气体测量 | 2013/07—2014/06 | 统计分析 | 光伏园区的微气候与植被管理对草地碳循环的影响[ | 英国Westmill光伏园区(51°37′03″N,01°38′45″W),面积12.1 hm2,装机规模5 MW |
| 植被、土壤采样,土壤水分与微气候观测 | 7 a | 统计分析 | 植被恢复对光伏园区土壤理化性质的影响[ | 美国科罗拉多州国家可再生能源实验室国家风能技术中心,装机规模1.1 MW |
| [1] | Kruitwagen L, Story K T, Friedrich J, et al. A global inventory of photovoltaic solar energy generating units[J]. Nature, 2021, 598: 604-610. |
| [2] | Yang L W, Jiang L G, Liu Y. More than doubled in 2023: Mapping the photovoltaic power plants in China based on satellite data and machine learning[J]. Renewable Energy, 2025, 256: 124381, doi: 10.1016/j.renene.2025.124381. |
| [3] | Xia Z L, Li Y J, Chen R S, et al. Mapping the rapid development of photovoltaic power stations in northwestern China using remote sensing[J]. Energy Reports, 2022, 8: 4117-4127. |
| [4] | Luo L H, Zhuang Y L, Liu H, et al. Environmental impacts of photovoltaic power plants in northwest China[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103120, doi: 10.1016/j.seta.2023.103120. |
| [5] | Wu C D, Liu H, Yu Y, et al. Ecohydrological effects of photovoltaic solar farms on soil microclimates and moisture regimes in arid northwest China: A modeling study[J]. Science of the Total Environment, 2022, 802: 149946, doi: 10.1016/j.scitotenv.2021.149946. |
| [6] | Bai Z Y, Jia A M, Bai Z J, et al. Photovoltaic panels have altered grassland plant biodiversity and soil microbial diversity[J]. Frontiers in Microbiology, 2022, 13: 1065899, doi: 10.3389/fmicb.2022.1065899. |
| [7] | Menta C, Remelli C, Andreoni M, et al. Can grasslands in photovoltaic parks play a role in conserving soil arthropod biodiversity?[J]. Life, 2023, 13(7): 1536, doi: 10.3390/life13071536. |
| [8] | Xu Z J, Li Y, Qin Y Z, et al. A global assessment of the effects of solar farms on albedo, vegetation, and land surface temperature using remote sensing[J]. Solar Energy, 2024, 268: 112198, doi: 10.1016/j.solener.2023.112198. |
| [9] | Yao J N, Zhu J F, Wang B B, et al. Application of photovoltaic systems in field observation and research stations: Research on the relationship between power generation scale and electricity consumption to improve photovoltaic application in field observation stations[J]. International Journal of Photoenergy, 2023(1): 6701631, doi: 10.1155/2023/6701631. |
| [10] | Hu A X, Levis S, Meehl G A, et al. Impact of solar panels on global climate[J]. Nature Climate Change, 2015, 6: 290-294. |
| [11] |
郑隽卿, 罗勇, 常蕊, 等. 大规模光伏开发对局地气候生态影响研究[J]. 太阳能学报, 2023, 44(8): 253-265.
doi: 10.19912/j.0254-0096.tynxb.2022-0530 |
|
[Zheng Junqing, Luo Yong, Chang Rui, et al. Study on impact of large-scaled photovoltaic development on local climate and ecosystem[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 253-265.]
doi: 10.19912/j.0254-0096.tynxb.2022-0530 |
|
| [12] | Zhang B, Zhang R H, Li Y, et al. Deploying photovoltaic arrays in degraded grasslands is a promising win-win strategy for promoting grassland restoration and resolving land use conflicts[J]. Journal of Environmental Management, 2024, 349: 119495, doi: 10.1016/j.jenvman.2023.119495. |
| [13] | Wang Z R, Hao Z, Jia X F, et al. Unravelling spatiotemporal patterns of solar photovoltaic plants development in China in the 21stcentury[J]. Environmental Research Letters, 2024, 19(3): 034005, doi: 10.1088/1748-9326/ad25a3. |
| [14] | Xia Z L, Li Y J, Zhang W, et al. Solar photovoltaic program helps turn deserts green in China: Evidence from satellite monitoring[J]. Journal of Environmental Management, 2022, 324: 116338, doi: 10.1016/j.jenvman.2022.116338. |
| [15] | Smith L M, Reschke E M, Bousquin J J, et al. A conceptual approach to characterizing ecological suitability: Informing socio-ecological measures for restoration effectiveness[J]. Ecological Indicators, 2022, 143: 109385, doi: 10.1016/j.ecolind.2022.109385. |
| [16] | Chen Y H, Zhou J Y, Ge Y, et al. Uncovering the rapid expansion of photovoltaic power plants in China from 2010 to 2022 using satellite data and deep learning[J]. Remote Sensing of Environment, 2024, 305: 114100, doi: 10.1016/j.rse.2024.114100. |
| [17] | Zhang X H, Xu M, Wang S J, et al. Mapping photovoltaic power plants in China using Landsat, random forest, and Google Earth Engine[J]. Earth System Science Data, 2022, 14(8): 3743-3755. |
| [18] | Heredia-Velásquez A M, Giraldo-Silva A, Nelson C, et al. Dual use of solar power plants as biocrust nurseries for large-scale arid soil restoration[J]. Nature Sustainability, 2023, 6(8): 955-964. |
| [19] | Wang F, Gao J. How a photovoltaic panel impacts rainfall-runoff and soil erosion processes on slopes at the plot scale[J]. Journal of Hydrology, 2023, 620: 129522, doi: 10.1016/j.rse.2024.114100. |
| [20] | Zhang S, Gong J, Zhang W, et al. Photovoltaic systems promote grassland restoration by coordinating water and nutrient uptake, transport and utilization[J]. Journal of Cleaner Production, 2024, 447: 141437, doi: 10.1016/j.jclepro.2024.141437. |
| [21] |
王怡雯, 马瑶瑶, 史培军, 等. 干旱区光伏电站运营对局地生态环境的影响[J]. 干旱区研究, 2024, 41(8): 1423-1433.
doi: 10.13866/j.azr.2024.08.16 |
|
[Wang Yiwen, Ma Yaoyao, Shi Peijun, et al. The impact of photovoltaic power plant operation on local ecological environments in arid areas[J]. Arid Zone Research, 2024, 41(8): 1423-1433.]
doi: 10.13866/j.azr.2024.08.16 |
|
| [22] | Zhang B, Zhang R, Li Y, et al. Ignoring the effects of photovoltaic array deployment on greenhouse gas emissions may lead to overestimation of the contribution of photovoltaic power generation to greenhouse gas reduction[J]. Environmental Science & Technology, 2023, 57(10): 4241-4252. |
| [23] | Armstrong A, Ostle N J, Whitaker J. Solar park microclimate and vegetation management effects on grassland carbon cycling[J]. Environmental Research Letters, 2016, 11(7): 074016, doi: 10.1088/1748-9326/11/7/074016. |
| [24] | De Marco A, Petrosillo I, Semeraro T, et al. The contribution of utility-scale solar energy to the global climate regulation and its effects on local ecosystem services[J]. Global Ecology and Conservation, 2014, 2: 324-337. |
| [25] |
Broadbent A M, Krayenhoff E S, Georgescu M, et al. The observed effects of utility-scale photovoltaics on near-surface air temperature and energy balance[J]. Journal of Applied Meteorology and Climatology, 2019, 58(5): 989-1006.
doi: 10.1175/JAMC-D-18-0271.1 |
| [26] | Li Z C, Zhao Y Y, Yang J X, et al. A comparative study on surface energy flux characteristics of photovoltaic power station in gobi in summer[J]. Theoretical and Applied Climatology, 2022, 148(3): 1239-1247. |
| [27] | Jiang J X, Gao X Q, Lü Q Q, et al. Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas[J]. Renewable Energy, 2021, 174: 157-169. |
| [28] | Graham M, Ates S, Melathopoulos A P, et al. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem[J]. Scientific Reports, 2021, 11(1): 1-13. |
| [29] | Zhang Y, Tian Z Q, Liu B L, et al. Effects of photovoltaic power station construction on terrestrial ecosystems: A meta-analysis[J]. Frontiers in Ecology and Evolution, 2023, 11: 1151182, doi: 10.3389/fevo.2023.1151182. |
| [30] | Barron-Gafford G A, Minor R L, Allen N A, et al. The photovoltaic heat island effect: Larger solar power plants increase local temperatures[J]. Scientific Reports, 2016, 6(1): 35070, doi: 10.1038/srep35070(2016). |
| [31] | Choi C S, Cagle A E, Macknick J, et al. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure[J]. Frontiers in Environmental Science, 2020, 8: 140, doi: 10.3389/fenvs.2020.00140. |
| [32] | Lambert Q, Bischoff A, Cueff S, et al. Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate[J]. Land Degradation & Development, 2021, 32(18): 5190-5202. |
| [33] |
丁成翔, 刘禹. 光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[J]. 草地学报, 2021, 29(5): 1061-1069.
doi: 10.11733/j.issn.1007-0435.2021.05.023 |
|
[Ding Chengxiang, Liu Yu. Effects of solar photovoltaic park construction on soil microbial community in alpine desert of Qinghai Tibet Plateau[J]. Acta Agrestia Sinica, 2021, 29(5): 1061-1069.]
doi: 10.11733/j.issn.1007-0435.2021.05.023 |
|
| [34] | Elamri Y, Cheviron B, Mange A, et al. Rain concentration and sheltering effect of solar panels on cultivated plots[J]. Hydrology and Earth System Sciences, 2018, 22(2): 1285-1298. |
| [35] | 朱少康, 王珊, 张军涛, 等. 光伏阵列的微气候特征及其对站区植物生长特性的影响[J]. 生态学杂志, 2021, 40(10): 3078-3087. |
|
[Zhu Shaokang, Wang Shan, Zhang Juntao, et al. Microclimate characteristics of photovoltaic arrays and their effects on plant growth in a solar power station area[J]. Chinese Journal of Ecology, 2021, 40(10): 3078-3087.]
doi: DOI: 10.13292/j.1000-4890.202110.016 |
|
| [36] | 罗久富, 梁松, 袁涛, 等. 光伏组件遮阴对喀斯特地区植物群落结构的影响[J]. 草业科学, 2023, 40(12): 2982-2990. |
| [Luo Jiufu, Liang Song, Yuan Tao, et al. Effects of partial shading by photovoltaic panels on grassland community structure in karst area[J]. Pratacultural Science, 2023, 40(12): 2982-2990.] | |
| [37] |
王祎婷, 王欣悦, 詹迎港, 等. 利用MODIS卫星数据的光伏电站生态环境效应监测与评估[J]. 测绘通报, 2023(8): 108-112.
doi: 10.13474/j.cnki.11-2246.2023.0241 |
|
[Wang Yiting, Wang Xinyue, Zhan Yinggang, et al. Monitoring and evaluation of environment effect of photovoltaic power station construction using MODIS satellite data[J]. Bulletin of Surveying and Mapping, 2023(8): 108-112.]
doi: 10.13474/j.cnki.11-2246.2023.0241 |
|
| [38] | Sturchio M A, Kannenberg S A, Knapp A K. Agrivoltaic arrays can maintain semi-arid grassland productivity and extend the seasonality of forage quality[J]. Applied Energy, 2024, 356: 122418, doi: 10.1016/j.apenergy.2023.122418. |
| [39] | Walston L J, Hartmann H M, Fox L, et al. If you build it, will they come? Insect community responses to habitat establishment at solar energy facilities in Minnesota, USA[J]. Environmental Research Letters, 2023, 19(1): 014053, doi: 10.1088/1748-9326/ad0f72. |
| [40] |
Urhausen A, Monz T, Kindermann W. Echocardiographic criteria of physiological left ventricular hypertrophy in combined strength- and endurance-trained athletes[J]. International Journal of Cardiac Imaging, 1997, 13(1): 43-52.
pmid: 9080238 |
| [41] | Bilčík M, Božiková M, Čimo J. Influence of roof installation of PV modules on the microclimate conditions of cattle breeding objects[J]. Applied Sciences, 2021, 11(5): 2140, doi: 10.3390/app11052140. |
| [42] | Faria A F, Maia A S, Moura G A, et al. Use of solar panels for shade for Holstein heifers[J]. Animals, 2023, 13(3): 329, doi: 10.3390/ani13030329. |
| [43] | Maia A S, de Andrade Culhari E, Fonsêca V D, et al. Photovoltaic panels as shading resources for livestock[J]. Journal of Cleaner Production, 2020, 258: 120551, doi: 10.1016/j.jclepro.2020.120551. |
| [44] | Fonsêca V D, de Andrade Culhari E, Moura G A, et al. Shade of solar panels relieves heat load of sheep[J]. Applied Animal Behaviour Science, 2023, 265: 105998, doi: 10.1016/j.applanim.2023.105998. |
| [45] | Jarčuška B, Gálffyová M, Schnürmacher R, et al. Solar parks can enhance bird diversity in agricultural landscape[J]. Journal of Environmental Management, 2024, 351: 119902, doi: 10.1016/j.jenvman.2023.119902. |
| [46] | Kosciuch K, Riser-Espinoza D, Moqtaderi C, et al. Aquatic habitat bird occurrences at photovoltaic solar energy development in southern California, USA[J]. Diversity, 2021, 13(11): 524, doi: 10.3390/d13110524. |
| [47] | Levin M O, Kalies E L, Forester E, et al. Solar energy-driven land-cover change could alter landscapes critical to animal movement in the continental United States[J]. Environmental Science & Technology, 2023, 57(31): 11499-11509. |
| [48] | Ashraf U, Morelli T L, Smith A B, et al. Aligning renewable energy expansion with climate-driven range shifts[J]. Nature Climate Change, 2024, 14(3): 242-246. |
| [49] | Kamp J, Koshkin M A, Bragina T M, et al. Persistent and novel threats to the biodiversity of Kazakhstan's steppes and semi-deserts[J]. Biodiversity and Conservation, 2016, 25: 2521-2541. |
| [50] | Chock R Y, Clucas B, Peterson E K, et al. Evaluating potential effects of solar power facilities on wildlife from an animal behavior perspective[J]. Conservation Science and Practice, 2021, 3(2): 319-330. |
| [51] | Freire F, Melcher S, Hochgraf C G, et al. Degradation analysis of an operating PV module on a farm sanctuary[J]. Journal of Renewable and Sustainable Energy, 2018, 10(1): 013505, doi: 10.1063/1.4994565. |
| [52] | 王诗雯, 王思彤, 李由, 等. 光伏阵列对松嫩草地土壤细菌群落组成与多样性的影响[J]. 东北师大学报(自然科学版), 2024, 56(1): 107-114. |
| [Wang Shiwen, Wang Sitong, Li You, et al. Effects of photovoltaic arrays on composition and biodiversity of soil bacteria in the Songnen grassland[J]. Journal of Northeast Normal University (Natural Science Edition), 2024, 56(1): 107-114.] | |
| [53] | Wu C D, Liu H, Yu Y, et al. Ecohydrological insight: Solar farms facilitate carbon sink enhancement in drylands[J]. Journal of Environmental Management, 2023, 342: 118304, doi: 10.1016/j.jenvman.2023.118304. |
| [54] |
Armstrong A, Waldron S, Whitaker J, et al. Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate[J]. Global Change Biology, 2014, 20(6): 1699-1706.
doi: 10.1111/gcb.12437 pmid: 24132939 |
| [55] | 朱新广, 王佳伟, 韩斌. 植物碳汇系统与中国碳中和之路[J]. 科学通报, 2023, 68(1): 12-17. |
| [Zhu Xinguang, Wang Jiawei, Han Bin. Plants for carbon farming and China's roadmap for carbon neutralization[J]. Chinese Science Bulletin, 2023, 68(1): 12-17.] |
| [1] | ZHOU Zhen, MENG Ji-jun. Optimization of minimum ecological land based on modified ecological footprint model and ecological importance assessment: a case of middle reaches of Heihe River [J]. , 2016, 39(3): 513-520. |
|
||
