Arid Land Geography ›› 2025, Vol. 48 ›› Issue (1): 53-62.doi: 10.12118/j.issn.1000-6060.2024.059
• Plant Ecology • Previous Articles Next Articles
WU Siqi1(), WEI Haiqin2, CHEN Chunzhu1(), WEI Lisi1, ZHAO Wenwei1, LI Huan1, SUN Yi1, JIANG Qingfeng1, ZHANG Xiaojian3, ZHAO Yan4
Received:
2024-01-26
Revised:
2024-05-30
Online:
2025-01-25
Published:
2025-01-21
Contact:
CHEN Chunzhu
E-mail:wh2113657@163.com;pollenchencz@gmail.com
WU Siqi, WEI Haiqin, CHEN Chunzhu, WEI Lisi, ZHAO Wenwei, LI Huan, SUN Yi, JIANG Qingfeng, ZHANG Xiaojian, ZHAO Yan. Distribution characteristics and its influencing factors of surface soil pollen in the marginal monsoon region of China[J].Arid Land Geography, 2025, 48(1): 53-62.
Tab. 1
Information of 38 surface soil pollen samples in the marginal monsoon region of China"
样号 | 省份 | 经度/°E | 纬度/°N | 海拔/m | 植被类型 | 样号 | 省份 | 经度/°E | 纬度/°N | 海拔/m | 植被类型 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 内蒙古 | 118.1916 | 48.1954 | 594 | 温带草原 | 20 | 青海 | 101.7496 | 35.2380 | 3620 | 高寒草甸 |
2 | 内蒙古 | 117.6678 | 44.3608 | 1061 | 温带草原 | 21 | 青海 | 101.5095 | 34.3277 | 3624 | 高寒草甸 |
3 | 内蒙古 | 114.0218 | 43.8385 | 1079 | 温带草原 | 22 | 青海 | 100.0912 | 35.4433 | 3251 | 高寒草甸 |
4 | 内蒙古 | 113.8248 | 41.8171 | 1474 | 温带草原 | 23 | 青海 | 99.1968 | 34.3466 | 4246 | 高寒草原 |
5 | 内蒙古 | 111.9580 | 41.8743 | 1484 | 温带草原 | 24 | 青海 | 98.6818 | 37.5435 | 3595 | 高寒草甸 |
6 | 内蒙古 | 109.5486 | 41.4184 | 1643 | 温带草原 | 25 | 青海 | 98.3203 | 37.3161 | 3498 | 高寒草原 |
7 | 内蒙古 | 109.1272 | 41.4311 | 1442 | 温带草原 | 26 | 青海 | 98.2959 | 34.8516 | 4224 | 高寒草甸 |
8 | 内蒙古 | 108.9133 | 41.4994 | 1338 | 温带草原 | 27 | 青海 | 97.3486 | 33.3814 | 4249 | 高寒草原 |
9 | 内蒙古 | 108.3732 | 41.7582 | 1451 | 温带草原 | 28 | 青海 | 96.8674 | 35.0698 | 4325 | 高寒草甸 |
10 | 内蒙古 | 108.1852 | 41.8837 | 1362 | 温带草原 | 29 | 青海 | 96.1393 | 34.7171 | 4579 | 高寒草甸 |
11 | 内蒙古 | 108.0843 | 41.8669 | 1372 | 温带草原 | 30 | 青海 | 95.2436 | 34.6446 | 4472 | 高寒草原 |
12 | 内蒙古 | 107.3315 | 41.7723 | 1498 | 温带草原 | 31 | 青海 | 93.1708 | 36.9647 | 2857 | 高寒荒漠 |
13 | 内蒙古 | 105.7014 | 38.3493 | 1563 | 温带草原 | 32 | 西藏 | 92.2592 | 31.5912 | 4591 | 高寒草甸 |
14 | 内蒙古 | 105.5002 | 38.1114 | 1487 | 温带草原 | 33 | 西藏 | 92.2586 | 31.5915 | 4590 | 高寒草甸 |
15 | 内蒙古 | 100.3784 | 39.8783 | 1325 | 温带荒漠 | 34 | 西藏 | 91.7169 | 31.9666 | 4623 | 高寒草甸 |
16 | 甘肃 | 99.4784 | 38.9213 | 3172 | 高寒草原 | 35 | 西藏 | 90.4644 | 29.2524 | 3667 | 高寒草原 |
17 | 甘肃 | 99.4784 | 38.9214 | 3170 | 高寒草原 | 36 | 西藏 | 85.4007 | 32.0089 | 4890 | 高寒草原 |
18 | 甘肃 | 100.8250 | 37.9754 | 3266 | 高寒灌丛草甸 | 37 | 西藏 | 83.8801 | 29.7957 | 4628 | 高寒草原 |
19 | 青海 | 102.1994 | 34.1744 | 3569 | 高寒灌木草甸 | 38 | 西藏 | 80.2225 | 31.8252 | 4449 | 高寒草原 |
Tab. 2
RDA results of 38 surface soil pollen samples and the climate variables in the marginal monsoon region of China"
气候参数 | 方差膨胀 因子(VIF) | 气候变量作为 唯一预测因子 | 约束轴置换 检验(ANOVA) | ||||
---|---|---|---|---|---|---|---|
运行1 | 运行2 | 方差解释量/% | 方差解释量/% | P值 | |||
年均降水量 | 17.3 | 15.8 | 7.2 | 1.0 | 0.129 | ||
最热月降水量 | 14.0 | 14.0 | 5.2 | 1.1 | 0.089 | ||
最冷月降水量 | 1.8 | 1.6 | 4.0 | 0.8 | 0.158 | ||
年均气温 | 446.1 | - | - | - | - | ||
最热月气温 | 340.8 | 2.5 | 12.9 | 5.3 | 0.001 | ||
最冷月气温 | 97.2 | 1.0 | 0.5 | 0.4 | 0.558 |
[1] | Li G Q, Wang Z, Zhao W W, et al. Quantitative precipitation reconstructions from Chagan Nur revealed lag response of East Asian summer monsoon precipitation to summer insolation during the Holocene in arid northern China[J]. Quaternary Science Reviews, 2020, 239: 106365, doi: 10.1016/j.quascirev.2020.106365. |
[2] | Wen R L, Xiao J L, Fan J W, et al. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China[J]. Quaternary Science Reviews, 2017, 176: 29-35. |
[3] | Zhang Y R, Li Y Q, Liu L N, et al. No evidence of human disturbance to vegetation in the Zoige Region (north-eastern Tibetan Plateau) in the last millennium until recent decades[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589: 110843, doi: 10.1016/j.palaeo.2022.110843. |
[4] | Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years[J]. Quaternary International, 2005, 136(1): 131-140. |
[5] |
Chen F H, Xu Q H, Chen J H, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5: 11186, doi: 10.1038/srep11186.
pmid: 26084560 |
[6] | Zhang J, Huang X Z, Wang Z L, et al. A late-Holocene pollen record from the western Qilian Mountains and its implications for climate change and human activity along the Silk Road, northwestern China[J]. The Holocene, 2018, 28(7): 1141-1150. |
[7] | Wang J L, Huang X Z, Zhang J, et al. Pollen record of humidity changes in the arid western Qilian Mountains over the past 300 years and comparison with tree-ring reconstructions[J]. Frontiers in Earth Science, 2020, 8: 562426, doi: 10.3389/feart.2020.562426. |
[8] | Davis M B, Brubaker L B. Differential sedimentation of pollen grains in lakes[J]. Limnology and Oceanography, 1973, 18(4): 635-646. |
[9] | Prentice I C. Pollen representation, source area, and basin size-toward a unified theory of pollen analysis[J]. Quaternary Research, 1985, 23(1): 76-86. |
[10] | Jackson S T. Pollen representation of vegetational patterns along an elevational gradient[J]. Journal of Vegetation Science, 1991, 2(5): 613-624. |
[11] | Sugita S. Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation[J]. Journal of Ecology, 1994, 82(4): 881-897. |
[12] |
韩岳婷, 李建勇, 刘剑波, 等. 准噶尔盆地西部花粉对植被的指示性研究[J]. 干旱区地理, 2023, 46(5): 773-781.
doi: 10.12118/j.issn.1000-6060.2022.437 |
[Han Yueting, Li Jianyong, Liu Jianbo, et al. Indicative study of pollen on vegetation in western Junger Basin[J]. Arid Land Geography, 2023, 46(5): 773-781.]
doi: 10.12118/j.issn.1000-6060.2022.437 |
|
[13] | Cao X Y, Tian F, Li K, et al. Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions[J]. Earth System Science Data, 2021, 13(7): 3525-3537. |
[14] | 陈辉, 吕新苗, 李双成. 柴达木盆地东部表土花粉分析[J]. 地理研究, 2004, 23(2): 201-210. |
[Chen Hui, Lü Xinmiao, Li Shuangcheng. A study on topsoil pollens in the east of Qaidam Basin[J]. Geographical Research, 2004, 23(2): 201-210.] | |
[15] | 李芙蓉. 中国北方表土孢粉组合及其与植被和气候的关系[D]. 兰州: 兰州大学, 2012. |
[Li Furong. The surface pollen assemblages and their relationships with modern vegetation and climate in north China[D]. Lanzhou: Lanzhou University, 2012.] | |
[16] | Xu Q H, Li Y C, Yang X L, et al. Quantitative relationship between pollen and vegetation in northern China[J]. Science in China Series D: Earth Sciences, 2007, 50(4): 582-599. |
[17] | Herzschuh U. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau[J]. Journal of Biogeography, 2007, 34(7): 1265-1273. |
[18] | 魏海成, 郑卓, 马海州, 等. 青海表土花粉分布规律及其与植被的关系[J]. 干旱区地理, 2009, 32(6): 932-940. |
[Wei Haicheng, Zheng Zhuo, Ma Haizhou, et al. Pollen distribution patterns of surface soil sample in Qinghai of China and their relationship with vegetation[J]. Arid Land Geography, 2009, 32(6): 932-940.] | |
[19] | 程波, 陈发虎. 西北干旱区石羊河流域表土花粉分析[J]. 中国沙漠, 2010, 30(2): 350-356. |
[Cheng Bo, Chen Fahu. Pollen analysis of topsoil samples from Shiyang River drainage, northwest China[J]. Journal of Desert Research, 2010, 30(2): 350-356.] | |
[20] | Wei H C, Chongyi E, Duan R L, et al. Fungal spore record of pastoralism on the NE Qinghai-Tibetan Plateau since the middle Holocene[J]. Science China Earth Sciences, 2021, 64: 1318-1331. |
[21] |
Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP[J]. Science, 2015, 347(6219): 248-250.
doi: 10.1126/science.1259172 pmid: 25593179 |
[22] | Ma M M, Dong G H, Jia X, et al. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes[J]. Quaternary Science Reviews, 2016, 145: 57-70. |
[23] | Li J Y, Zhao Y, Xu Q H, et al. Human influence as a potential source of bias in pollen-based quantitative climate reconstructions[J]. Quaternary Science Reviews, 2014, 99: 112-121. |
[24] | Li M Y, Xu Q H, Zhang S R, et al. Indicator pollen taxa of human-induced and natural vegetation in northern China[J]. The Holocene, 2015, 25(4): 686-701. |
[25] | 刘鸿雁, 李宜垠. 半干旱区气候变化和人类活动的孢粉指示[J]. 古生物学报, 2009, 48(2): 211-221. |
[Liu Hongyan, Li Yiyin. Pollen indicators of climate change and human activities in the semi-arid region[J]. Acta Palaeontologica Sinica, 2009, 48(2): 211-221.] | |
[26] | 张雅平, 赵克良, 周新郢, 等. 家养食草动物粪便中的花粉及菌孢子类型及其对人类活动的指示意义[J]. 人类学学报, 2021, 40(5): 879-887. |
[Zhang Yaping, Zhao Keliang, Zhou Xinyin, et al. A study of pollen and fungal spores extracted from the feces of domestic herbivores in China and their implications for human behavior[J]. Acta Anthropologica Sinica, 2021, 40(5): 879-887.] | |
[27] | 郝秀东, 翁成郁. 粪生真菌孢子在古生态学研究中的指示意义[J]. 海洋地质与第四纪地质, 2015, 35(1): 175-184. |
[Hao Xiudong, Wen Chengyu. The indicative significance of spores of corpophilous fungi in palaeoecological research[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 175-184.] | |
[28] | van Geel B. Non-pollen palynomorphs[C]// Smol J P, BirksH J B, LastW M, et al. Tracking Environmental Change Using Lake Sediments (vol. 3):Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer Academic Publisher, 2001: 1-17. |
[29] | Huang X Z, Zhang J, Storozum M, et al. Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts[J]. Review of Palaeobotany and Palynology, 2020, 275: 104171, doi: 10.1016/j.revpalbo.2020.104171. |
[30] | Huang X Z, Zhang J, Ren L L, et al. Intensification and driving forces of pastoralism in northern China 5.7 ka ago[J]. Geophysical Research Letters, 2021, 48(7): e2020GL092288, doi: 10.1029/2020GL092288. |
[31] | Zhang J, Huang X Z, Wang J L, et al. An inverse relationship between moisture and grazing intensity in an arid mountain-basin system[J]. Progress in Physical Geography: Earth and Environment, 2022, 46(2): 310-322. |
[32] | Zhang J, Huang X Z, Zhang S R, et al. Cycles of grazing and agricultural activity during the historical period and its relationship with climatic and societal changes in northern China[J]. Land Degradation & Development, 2021, 32(11): 3315-3325. |
[33] | Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3): 351-364. |
[34] | 中国植被编辑委员会. 中国植被[M]. 北京: 科学出版社, 1995: 917-1034. |
[Editorial Committee of Vegetation of China. Vegetation of China[M]. Beijing: Science Press, 1995: 917-1034.] | |
[35] | Stockmarr J. Tablets with spores used in absolute pollen analysis[J]. Pollen et Spores, 1971, 13: 615-621. |
[36] | Faegri K, Iversen J. Textbook of pollen analysis[M]. 4th ed. Chichester: John Wiley & Sons, 1989. |
[37] | 王伏雄, 钱南芬, 张玉, 等. 中国植物花粉形态[M]. 北京: 科学出版社, 1995. |
[Wang F X, Qian N F, Zhang Y, et al. Pollen flora of China[M]. Beijing: Science Press, 1995.] | |
[38] | 唐领余, 毛礼米, 李春海, 等. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016. |
[Tang Lingyu, Mao Limi, Li Chunhai, et al. An illustrated handbook of Quaternary pollen and spores in China[M]. Beijing: Science Press, 2016.] | |
[39] | 席以珍, 宁建长. 中国干旱半干旱地区花粉形态研究[J]. 玉山生物学报, 1994, 11: 119-191. |
[Xi Yizhen, Ning Jianchang. Study on pollen morphology of plants from dry and semidry area in China[J]. Yunshania, 1994, 11: 119-191.] | |
[40] | Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15): 1965-1978. |
[41] | Prentice I C. Multidimensional scaling as a research tool in Quaternary palynology: A review of theory and methods[J]. Review of Palaeobotany and Palynology, 1980, 31: 71-104. |
[42] | Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO[M]. Cambridge: Cambridge University Press, 2003. |
[43] | ter Braak C J F, Prentice I C. A theory of gradient analysis[C]// Begon M, FitterA H, FordE D, et al. Advances in Ecological Research. Cambridge: Academic Press, 1988. |
[44] | Pan Y F, Yan S, Behling H, et al. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction[J]. Aerobiologia, 2012, 29(2): 161-173. |
[45] | Li W. On dispersal efficiency of Picea pollen[J]. Journal of Integrative Plant Biology, 1991, 33(10): 792-800. |
[46] | Zhao Y, Liu H Y, Li F R, et al. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China[J]. The Holocene, 2012, 22(12): 1385-1392. |
[47] | El-Moslimany A P. Ecological significance of common nonarboreal pollen: Examples from drylands of the Middle-East[J]. Review of Palaeobotany and Palynology, 1990, 64(1-4): 343-350. |
[48] | Li Q, Lu H Y, Zhu L P, et al. Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau) since 8.4 kyr BP[J]. The Holocene, 2011, 21(6): 939-950. |
[49] | Zhao Y, Herzschuh U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau[J]. Vegetation History and Archaeobotany, 2009, 18: 245-260. |
[50] | Qin F. Modern pollen assemblages of the surface lake sediments from the steppe and desert zones of the Tibetan Plateau[J]. Science China Earth Sciences, 2021, 64: 425-439. |
[1] | CHANG Wenjing, CONG Shixiang, WANG Rongrong, DING Xudong, YU Hailong, HUANG Juying. Quantitative analysis of NDVI changes in Mu Us Sandy Land by climate change and human activities [J]. Arid Land Geography, 2025, 48(1): 63-74. |
[2] | KANG Limin, TENG Xinru, CHE Jiahang, HUAI Baojuan. Spatiotemporal variations of snow cover on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(9): 1462-1471. |
[3] | WANG Nan, LIU Zexuan, ZHENG Jianghua, ZHONG Tao, MENG Chengfeng. Spatiotemporal characteristics and driving forces of glacial lakes in Tianshan Mountains [J]. Arid Land Geography, 2024, 47(9): 1472-1481. |
[4] | FAN Lin, NIU Yu, ZHANG Faqi. Vegetation types and distribution in the evaluation area of Qinghai area of Kunlun Mountain National Park [J]. Arid Land Geography, 2024, 47(9): 1530-1541. |
[5] | MENG Huimin, ZHAN Chesheng, HU Shi, LIN Zhonghui. Research progress on simulation of soil water-salt transport in large-scale irrigation districts [J]. Arid Land Geography, 2024, 47(9): 1566-1576. |
[6] | CHAO Bao, ZHAO Yuanyuan, WU Haiyan, LI Yuan, SU Ning. Ecosystem services and its response to climate factors in the Mongolian Plateau from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(9): 1577-1586. |
[7] | XIA Tingting, XUE Xuan, WANG Haowei, XU Wenzhe, SHENG Ziyi, WANG Yang. Changes in terrestrial water storage and its drivers on the north slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(8): 1292-1303. |
[8] | ZHU Chenggang, CHEN Yaning, ZHANG Mingjun, CHE Yanjun, SUN Meiping, ZHAO Ruifeng, WANG Yang, LIU Yuting. Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(7): 1097-1105. |
[9] | ZHANG Jing, MA Long, LIU Tingxi, SUN Bolin, QIAO Zixu. Reconstruction of the minimum temperature over the past 202 years based on tree rings of Picea crassifolia in the Helan Mountains [J]. Arid Land Geography, 2024, 47(6): 909-921. |
[10] | FAN Jing, SHEN Yanbo, CHANG Rui. Impact of climate change on the selection of typical meteorological years in solar energy resource assessment [J]. Arid Land Geography, 2024, 47(6): 922-931. |
[11] | LI Hui, LIU Tiejun, WANG Shaohui, LIU Dongwei. Spatial and temporal variation of water use efficiency and its influencing factors in desert steppe of Inner Mongolia from 2001 to 2021 [J]. Arid Land Geography, 2024, 47(6): 993-1003. |
[12] | XIANG Yanyun, WANG Yi, CHEN Yaning, ZHANG Qifei, ZHANG Yujie. Prediction of future hydrological drought risk in the Yarkant River Basin based on CMIP6 models [J]. Arid Land Geography, 2024, 47(5): 798-809. |
[13] | HUANG Yunbo, ZHANG Chong, WANG Yudan. Change trend of vegetation cover and its response to soil moisture status in Weihe River Basin [J]. Arid Land Geography, 2024, 47(5): 841-849. |
[14] | ZHU Lei, WANG Ke, DING Yimin, SUN Zhenyuan, SUN Boyan. Early identification of rice and corn planting distribution in Qingtongxia irrigation area based on Sentinel-2 [J]. Arid Land Geography, 2024, 47(5): 850-860. |
[15] | ZHAO Mingjie, WANG Ninglian, SHI Chenlie, HOU Jingqi. Temporal and spatial variations of lake ice phenology in large lakes of Central Asia from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(4): 561-575. |
|