CollectHomepage AdvertisementContact usMessage

Arid Land Geography ›› 2023, Vol. 46 ›› Issue (8): 1303-1313.doi: 10.12118/j.issn.1000-6060.2022.530

• Biology and Pedology • Previous Articles     Next Articles

Effect of salt crust thickness on distribution characteristics of soil water and salt

GUO Min1,2,3(),LI Xinhu1,2,3(),WANG Hongchao1,2,3,LI Jialin1,3   

  1. 1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. National Field Scientific Observation and Research Station of Aksu Oasis Farmland Ecosystem, Aksu 843017, Xinjiang, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-10-17 Revised:2022-11-21 Online:2023-08-25 Published:2023-09-21

Abstract:

Soil salt crust has an important impact on soil evolution and ecohydrological processes in arid areas. There are few recent studies on water and salt distribution characteristics in salt-crust soils, and the influence of salt-crust thickness is not considered, leading to great differences in research results. Therefore, in this paper, four initial salt concentration treatments (0 g·L−1, 10 g·L−1, 150 g·L−1, and 250 g·L−1) were set to obtain different salt-crust thicknesses (4.5 mm, 6.6 mm, 7.3 mm) through laboratory simulation tests, and the soil-profile dynamics of water and salt were compared and analyzed using a partial repeated stepwise withdrawal method. The results were as follows: (1) Compared with the non-salt treatment, the thicker the salt crust, the larger the soil-profile water content, and the smaller the salt-content variation range. (2) At the end of the experiment, the water content distribution characteristics of the 4.5 mm salt-crust soil were similar to those of the unsalted treatment, and the water contents of the 6.6 mm and 7.3 mm salt-crust soils were significantly higher than that of the unsalted treatment (P<0.05). (3) At the end of the test, the minimum salt contents of the 4.5 mm, 6.6 mm, and 7.3 mm salt-crust soils decreased by 90.5%, 46.3%, and 32.1%, respectively, compared with their initial salt contents. The results confirm that salt-crust thickness has a great influence on the distribution of soil water and salt. Therefore, it is suggested that the influence of salt-crust thickness should be considered comprehensively in future research on distribution characteristics of water and salt.

Key words: salt crust thickness, distribution characteristics of water and salt, evaporation front, HYDRUS-1D model