Arid Land Geography ›› 2022, Vol. 45 ›› Issue (6): 1899-1907.doi: 10.12118/j.issn.1000-6060.2022.026
• Biology and Environment • Previous Articles Next Articles
GUO Xin(),WEI Tianxing(),CHEN Yuxuan,SHA Guoliang,REN Kang,YU Huan
Received:
2022-01-17
Revised:
2022-04-15
Online:
2022-11-25
Published:
2023-02-01
Contact:
Tianxing WEI
E-mail:guoxin0408@bjfu.edu.cn;weitx@bjfu.edu.cn
GUO Xin, WEI Tianxing, CHEN Yuxuan, SHA Guoliang, REN Kang, YU Huan. Characteristics of soil ecological stoichiometry in typical fallow-restored vegetation in the loess hilly areas[J].Arid Land Geography, 2022, 45(6): 1899-1907.
Tab. 1
Basic information about the sample sites"
植物群落 | 海拔/m | 林龄/a | 平均高度/m | 平均胸径(基径)/cm | 郁闭度(盖度)/% | 林下主要植被 |
---|---|---|---|---|---|---|
油松(Pinus tabulaeformis) | 1363 | 20 | 7.3 | 8.9 | 61 | 毛莲蒿(Artemisia vestita) |
刺槐(Robinia pseudoacacia) | 1429 | 20 | 10.3 | 15.0 | 75 | 针茅(Stipa capillata)、赖草(Leymus secalinus)、紫苜蓿(Medicago sativa)、兴安胡枝子(Lespedeza daurica) |
沙棘(Hippophae rhamnoides) | 1390 | 20 | 1.8 | 3.5 | 70 | 赖草、茵陈蒿(Artemisia capillaris)、毛莲蒿、兴安胡枝子 |
草地 | 1377 | 20 | - | - | 85 | 兴安胡枝子、赖草、针茅 |
Tab. 2
Contents of soil carbon, nitrogen and phosphorus nutrients of different vegetations"
土壤指标 | 植物群落 | 最大值/g.kg-1 | 最小值/g.kg-1 | 平均值/g.kg-1 | 标准差 | 变异系数 |
---|---|---|---|---|---|---|
SOC | 油松 | 0.562 | 0.098 | 0.232 | 0.105 | 0.45 |
刺槐 | 0.947 | 0.219 | 0.367 | 0.183 | 0.50 | |
沙棘 | 0.992 | 0.087 | 0.302 | 0.243 | 0.80 | |
草地 | 0.764 | 0.172 | 0.341 | 0.179 | 0.52 | |
STN | 油松 | 0.055 | 0.020 | 0.034 | 0.009 | 0.26 |
刺槐 | 0.086 | 0.044 | 0.056 | 0.012 | 0.21 | |
沙棘 | 0.086 | 0.021 | 0.043 | 0.020 | 0.47 | |
草地 | 0.078 | 0.030 | 0.044 | 0.014 | 0.32 | |
STP | 油松 | 0.646 | 0.554 | 0.591 | 0.031 | 0.05 |
刺槐 | 0.656 | 0.565 | 0.619 | 0.027 | 0.04 | |
沙棘 | 0.596 | 0.493 | 0.557 | 0.025 | 0.04 | |
草地 | 0.689 | 0.588 | 0.631 | 0.026 | 0.04 |
Tab. 3
Soil stoichiometric ratio of different vegetations"
土壤指标 | 植物群落 | 最大值 | 最小值 | 平均值 | 标准差 | 变异系数 |
---|---|---|---|---|---|---|
C:N | 油松 | 10.163 | 3.449 | 6.746 | 1.959 | 0.29 |
刺槐 | 10.965 | 4.768 | 6.298 | 1.555 | 0.25 | |
沙棘 | 11.505 | 3.286 | 6.284 | 2.238 | 0.36 | |
草地 | 11.695 | 5.196 | 7.516 | 1.738 | 0.23 | |
C:P | 油松 | 0.969 | 0.170 | 0.395 | 0.181 | 0.46 |
刺槐 | 1.456 | 0.367 | 0.588 | 0.272 | 0.46 | |
沙棘 | 1.737 | 0.146 | 0.545 | 0.443 | 0.81 | |
草地 | 1.144 | 0.276 | 0.535 | 0.257 | 0.48 | |
N:P | 油松 | 0.095 | 0.035 | 0.058 | 0.016 | 0.28 |
刺槐 | 0.133 | 0.069 | 0.090 | 0.018 | 0.20 | |
沙棘 | 0.174 | 0.037 | 0.078 | 0.037 | 0.47 | |
草地 | 0.117 | 0.048 | 0.069 | 0.021 | 0.30 |
Tab. 5
Multiple linear regression analysis of soil physical and chemical properties"
土壤理化性质 | 多元回归方程 | r | P |
---|---|---|---|
SOC | Y=-0.02sand-7.61BD+14.4 | 0.41 | 0.00400 |
STN | Y =0.002silt-0.76BD-0.001SWC+1.26 | 0.72 | 0.00001 |
STP | Y =0.009silt-0.78BD+1.42 | 0.66 | 0.00001 |
C:P | Y=-7601.8clay+1046.4silt-85.16SWC-23967.74 | 0.55 | 0.00100 |
N:P | Y=-0.002sand-1.04BD-0.001SWC+1.99 | 0.62 | 0.00020 |
[1] |
Piaszczyk W, Błońska E, Lasota J, et al. A comparison of C:N:P stoichiometry in soil and deadwood at an advanced decomposition stage[J]. Catena, 2019, 179: 1-5.
doi: 10.1016/j.catena.2019.03.025 |
[2] | 李鑫, 张文菊, 邬磊, 等. 土壤质量评价指标体系的构建及评价方法[J]. 中国农业科学, 2021, 54(14): 3043-3056. |
[Li Xin, Zhang Wenju, Wu Lei. et al. Advance in indicator screening and methodologies of soil quality evaluation[J]. Scientia Agricultural Sinica, 2021, 54(14): 3043-3056.] | |
[3] |
Cook K. Soil microbiology, ecology, and biochemistry, fourth edition[J]. Soil Science Society of America Journal, 2015, 79(6): 1821.
doi: 10.2136/sssaj2015.0006br |
[4] | 海旭莹, 董凌勃, 汪晓珍, 等. 黄土高原退耕还草地C、N、P生态化学计量特征对植物多样性的影响[J]. 生态学报, 2020, 40(23): 8570-8581. |
[Hai Xuying, Dong Lingbo, Wang Xiaozhen. et al. Effects of carbon, nitrogen, and phosohrus ecological stoichiometry characteristics on plant diversity since returning farmland to grassland on the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(23): 8570-8581.] | |
[5] | 任璐璐, 张炳学, 韩凤朋, 等. 黄土高原不同年限刺槐土壤化学计量特征分析[J]. 水土保持学报, 2017, 31(2): 339-344. |
[Ren Lulu, Zhang Bingxue, Han Fengpeng. et al. Ecological stoichiometric characteristics of soils in Robinia pseudoacacia forests of different ages on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2017, 31(2): 339-344.] | |
[6] |
Liu Y, Fang Y, An S S. How C:N:P stoichiometry in soils and plants responds to succession in Robinia pseudoacacia forests on the Loess Plateau, China[J]. Forest Ecology and Management, 2020, 475: 118394, doi: 10.1016/j.foreco.2020.118394.
doi: 10.1016/j.foreco.2020.118394 |
[7] | 杨佳佳, 张向茹, 马露莎, 等. 黄土高原刺槐林不同组分生态化学计量关系研究[J]. 土壤学报, 2014, 51(1): 133-142. |
[Yang Jiajia, Zhang Xiangru, Ma Lusha, et al. Ecological stoichiometric relationships between components of Robinia pseudoacacia of forest in Loess Plateau[J]. Acta Pedologica Sinica, 2014, 51(1): 133-142.] | |
[8] | 曾全超, 李鑫, 董扬红, 等. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J]. 自然资源学报, 2015, 30(5): 870-879. |
[Zeng Quanchao, Li Xin, Dong Yanghong, et al. Ecological stoichiometry characteristics and physical-chemical properties of soil at different latitudes on the Loess Plateau[J]. Journal of Natural Resources, 2015, 30(5): 870-879.] | |
[9] | 王岩松, 马保明, 高海平, 等. 晋西黄土区油松和刺槐人工林土壤养分及其化学计量比对林分密度的响应[J]. 北京林业大学学报, 2020, 42(8): 81-93. |
[Wang Yansong, Ma Baoming, Gao Haiping, et al. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81-93.] | |
[10] |
Mobley M L, Lajtha K, Kramer M G, et al. Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development[J]. Global Change Biology, 2015, 21(2): 986-996.
doi: 10.1111/gcb.12715 pmid: 25155991 |
[11] | 尹秋龙, 寇萌, 焦菊英, 等. 黄土丘陵沟壑区不同植物群落的土壤养分及其化学计量特征[J]. 水土保持通报, 2017, 37(1): 62-66. |
[Yin Qiulong, Kou Meng, Jiao Juying, et al. Characteristics of soil nutrients and stoichiometry in different communities in hilly-gullied region of Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2017, 37(1): 62-66.] | |
[12] |
Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423-436.
doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 |
[13] | Lorenz K, Lal R. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons[J]. Advances in Agronomy, 2005, 88: 35-66. |
[14] |
Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450(7167): 277-280.
doi: 10.1038/nature06275 |
[15] | 姜丽, 魏天兴, 李亦然, 等. 地形因子对陕北黄土丘陵区防护林树种分布的影响[J]. 干旱区地理, 2021, 44(6): 1763-1771. |
[Jiang Li, Wei Tianxing, Li Yiran. et al. Effects of topographical factors on tree species distribution of shelter forest in loess hilly region of northern Shaanxi[J]. Arid Land Geography, 2021, 44(6): 1763-1771.] | |
[16] | 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2008. |
[Bao Shidan. Study of analysis of soil and agrochemistry[M]. 3rd ed. Beijing: China Agriculture Press, 2008.] | |
[17] | 孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020, 39(3): 766-774. |
[Sun Qian, Wang Bing, Zhou Huaiping. et al. Spatial variation of ecological stoichiometry of soil C, N and P in a small catchment of loess hilly area[J]. Chinese Journal of Ecology, 2020, 39(3): 766-774.] | |
[18] | 李强, 周道玮, 陈笑莹. 地上枯落物的累积、分解及其在陆地生态系统中的作用[J]. 生态学报, 2014, 34(14): 3807-3819. |
[Li Qiang, Zhou Daowei, Chen Xiaoying. The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem[J]. Acta Ecologica Sinica, 2014, 34(14): 3807-3819.] | |
[19] |
Deng L, Shangguan Z P. Afforestation drives soil carbon and nitrogen changes in China[J]. Land Degradation & Development, 2017, 28(1): 151-165.
doi: 10.1002/ldr.2537 |
[20] | 毛娜, 邵明安, 黄来明. 六道沟小流域地形序列土壤碳剖面分布特征及影响因素[J]. 水土保持学报, 2017, 31(5): 222-230. |
[Mao Na, Shao Ming’an, Huang Laiming. Distribution characteristics and influencing factors of soil carbon profile along toposequences in Liudaogou Watershed[J]. Journal of Soil and Water Conservation, 2017, 31(5): 222-230.] | |
[21] | 刘若莎, 王冬梅. 黄土高原高寒区不同人工林土壤养分及生态化学计量特征[J]. 北京林业大学学报, 2021, 43(1): 88-95. |
[Liu Ruosha, Wang Dongmei. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88-95.] | |
[22] |
Shi J, Cui L L. Soil carbon change and its affecting factors following afforestation in China[J]. Landscape and Urban Planning, 2010, 98(2): 75-85.
doi: 10.1016/j.landurbplan.2010.07.011 |
[23] | 刘伟, 程积民, 高阳, 等. 黄土高原草地土壤有机碳分布及其影响因素[J]. 土壤学报, 2012, 49(1): 68-76. |
[Liu Wei, Cheng Jimin, Gao Yang, et al. Distribution of soil organic carbon in grassland on Loess Plateau and its infuencing factors[J]. Acta Pedologica Sinica, 2012, 49(1): 68-76.] | |
[24] | 张智勇, 王瑜, 艾宁, 等. 陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素[J]. 北京林业大学学报, 2020, 42(11): 56-63. |
[Zhang Zhiyong, Wang Yu, Ai Ning, et al. Distribution characteristics of soil organic carbon and its influencing factors in different vegetation types in loess region of nourthern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 56-63.] | |
[25] |
赵华晨, 高菲, 李斯雯, 等. 长白山阔叶红松林和杨桦次生林土壤有机碳氮的协同积累特征[J]. 应用生态学报, 2019, 30(5): 1615-1624.
doi: 10.13287/j.1001-9332.201905.040 |
[Zhao Huachen, Gao Fei, Li Siwen, et al. Co-accumulation characters of soil organic carbon and nitrogen under broadleaved Korean pine and Betula platyphylla secondary forests in Changbai Mountain, China[J]. Journal of Applied Ecology, 2019, 30(5): 1615-1624.]
doi: 10.13287/j.1001-9332.201905.040 |
|
[26] |
Tian H, Chen G, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139-151.
doi: 10.1007/s10533-009-9382-0 |
[27] | 王慧, 郭月峰, 姚云峰, 等. 不同土地利用方式下土壤碳氮磷化学计量特征[J]. 西南农业学报, 2020, 33(5): 995-1000. |
[Wang Hui, Guo Yuefeng, Yao Yunfeng, et al. Ecological stoichiometry of soil carbon, nitrogen and phosphorus under different land use patterns[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(5): 995-1000.] | |
[28] | Yang Y H, Fang J Y, Guo D L, et al. Vertical patterns of soil carbon, nitrogen and carbon: Nitrogen stoichiometry in Tibetan grasslands[J]. Biogeosciences Discussions, 2010, 7: 1-24. |
[29] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. |
[Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947.] | |
[30] |
Vitousek P M, Farrington H. Nutrient limitation and soil development: Experimental test of a biogeochemical theory[J]. Biogeochemistry, 1997, 37(1): 63-75.
doi: 10.1023/A:1005757218475 |
[31] | 温晨, 杨智姣, 杨磊, 等. 半干旱黄土小流域不同植被类型植物与土壤生态化学计量特征[J]. 生态学报, 2021, 41(5): 1824-1834. |
[Wen Chen, Yang Zhijiao, Yang Lei, et al. Ecological stoichiometry characteristics of plants and soil under different vegetation types in the semi-arid loess small watershed[J]. Acta Ecologica Sinica, 2021, 41(5): 1824-1834.] | |
[32] |
Wang L L, Zhang G H, Zhu P Z, et al. Soil C, N and P contents and their stoichiometry as affected by typical plant communities on steep gully slopes of the Loess Plateau, China[J]. Catena, 2022, 208: 105740, doi: 10.1016/j.catena.2021.105740.
doi: 10.1016/j.catena.2021.105740 |
[33] | 苏卓侠, 苏冰倩, 上官周平. 黄土高原刺槐叶片-土壤生态化学计量参数对降雨量的响应特征[J]. 生态学报, 2020, 40(19): 7000-7008. |
[Su Zhuoxia, Su Bingqian, Shangguan Zhouping, et al. Response characteristics of Robinia pseudoacacia leaf and soil ecological stoichiometric parameters to precipitation in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(19): 7000-7008.] | |
[34] | 汤洁, 娄云, 李娜, 等. 冻融作用下盐碱水田土壤含水率和氮素对有机碳影响研究[J]. 生态环境学报, 2012, 21(4): 620-623. |
[Tang Jie, Lou Yun, Li Na, et al. Soil moisture content and nitrogen impacts on soil organic carbon of saline-alkali paddy field under the effect of freeze-thaw[J]. Ecology and Environment Sciences, 2012, 21(4): 620-623.] | |
[35] | 王亚东, 魏江生, 周梅, 等. 大兴安岭南段杨桦次生林土壤化学计量特征[J]. 土壤通报, 2020, 51(5): 1056-1064. |
[Wang Yadong, Wei Jiangsheng, Zhou Mei, et al. Soil stoichiometric characteristics in the poplar and birch secondary forests in southern Greater Xing’an Mountains[J]. Chinese Journal of Soil Science, 2020, 51(5): 1056-1064.] | |
[36] |
商素云, 姜培坤, 宋照亮, 等. 亚热带不同林分土壤表层有机碳组成及其稳定性[J]. 生态学报, 2013, 33(2): 416-424.
doi: 10.5846/stxb201111301831 |
[Shang Suyun, Jiang Peikun, Song Zhaoliang, et al. Composition and stability of organic carbon in the top soil under different forest types in subtropical China[J]. Acta Ecologica Sinica, 2013, 33(2): 416-424.]
doi: 10.5846/stxb201111301831 |
|
[37] | 张岩松, 雷泽勇, 于东伟, 等. 沙质草地营造樟子松林后土壤容重的变化及其影响因子[J]. 生态学报, 2019, 39(19): 7144-7152. |
[Zhang Yansong, Lei Zeyong, Yu Dongwei, et al. Changes in soil bulk density and its influencing factors after sandy grassland afforestation with Pinus sylvestris var. mongolica[J]. Acta Ecologica Sinica, 2019, 39(19): 7144-7152.] | |
[38] |
葛楠楠, 石芸, 杨宪龙, 等. 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征[J]. 应用生态学报, 2017, 28(5): 1626-1632.
doi: 10.13287/j.1001-9332.201705.021 |
[Ge Nannan, Shi Yun, Yang Xianlong, et al. Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, northwest China[J]. Journal of Applied Ecology, 2017, 28(5): 1626-1632.]
doi: 10.13287/j.1001-9332.201705.021 |
|