收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2021, Vol. 44 ›› Issue (2): 346-359.doi: 10.12118/j.issn.1000–6060.2021.02.06

• 气候与水文 • 上一篇    下一篇

新疆塔城地区极端气温变化特征及其影响因子分析

高婧1,2(),李胜楠3,井立红1,4,毛炜峄5(),井立军2   

  1. 1.中亚大气科学研究中心,新疆 乌鲁木齐 830002
    2.沙湾县气象局,新疆 沙湾 832100
    3.额敏县气象局,新疆 额敏 834600
    4.塔城地区气象局,新疆 塔城 834700
    5.中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
  • 收稿日期:2020-05-08 修回日期:2020-10-19 出版日期:2021-03-25 发布日期:2021-04-14
  • 通讯作者: 毛炜峄
  • 作者简介:高婧(1978-),女,高级工程师,硕士,从事预报预测及气候变化研究. E-mail:1575035865@qq.com
  • 基金资助:
    国家重点研发计划(2019YFC1510501);国家重点研发计划(2018YFC1505602);中亚大气科学研究基金项目资助(caas201717)

Varialility characteristics of extreme temperature and its influencing factors in Tacheng Prefecture, Xinjiang

GAO Jing1,2(),LI Shengnan3,JING Lihong1,4,MAO Weiyi5(),JING Lijun2   

  1. 1. Center of Central Asia Atmospheric Sciences Research, Urumqi 830002, Xinjiang, China
    2. Shawan Meteorological Bureau, Shawan 832100, Xinjiang, China
    3. Emin Meteorological Bureau, Emin 834600, Xinjiang, China
    4. Tacheng Meteorological Bureau, Tacheng 834700, Xinjiang, China
    5. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China
  • Received:2020-05-08 Revised:2020-10-19 Online:2021-03-25 Published:2021-04-14
  • Contact: Weiyi MAO

摘要:

利用塔城地区7个国家气象观测站1961—2018年逐日气温资料,选用国际通用的10个极端气温指数,分析塔城地区极端气温的时空变化特征及其影响因子。结果表明:(1) 塔城地区极端气温指数暖化趋势明显,最低气温极低值以0.97 ℃·(10a)-1的倾向率显著升高,最高气温极高值以0.09 ℃·(10a)-1的倾向率不显著升高;冷昼、冷夜、霜冻、冰冻日数分别以1.75、5.24、4.07、1.84 d·(10a)-1的趋势减少,暖昼、暖夜、夏季、热夜日数分别以1.79、5.89、2.18、2.08 d·(10a)-1的趋势显著增加;选取的10个极端气温指数未来变化趋势均与过去58 a趋势相同,且持续性较强。(2) 冷指数与暖指数变幅表现出明显的不对称性,最低气温极低值变幅大于最高气温极高值,夜指数的变幅大于昼指数;大部分极端气温指数表现为地区北部的变暖幅度大于地区南部。(3) 最低气温极低值、冷昼、冷夜在20世纪80年代初期发生暖突变;暖昼、暖夜、夏季、热夜、霜冻在90年代中期发生暖突变。(4) 整体上来看,大气环流变化对冷指数的影响高于暖指数,其中冷昼、冷夜、霜冻、冰冻日数与冬季北半球、亚洲极涡面积指数正相关,与太平洋、北美、大西洋欧洲区极涡面积及欧亚、亚洲经向环流指数正相关,与欧亚、亚洲纬向环流、西藏高原指数负相关;暖昼、暖夜、夏季、热夜日数与夏季北半球、西太平洋副热带高压面积及西藏高原指数正相关。(5) 冷、暖指数受大西洋、热带太平洋地区海表温度变化的影响存在差异;夜指数比昼指数对海表温度的响应更明显。

关键词: 极端气温事件, 变化特征, 环流指数, 海表温度, 新疆塔城

Abstract:

The Tacheng Prefecture is in the northwestern Xinjiang, China, and is sensitive to climate change. Based on the daily temperature data of seven national meteorological stations in the Tacheng Prefecture, sea surface temperature (SST) from the Physical Sciences Laboratory of the National Oceanic and Atmospheric Administration (NOAA), and atmospheric circulation indices from the National Climate Center of China Meteorological Administration from 1961 to 2018, and using some mathematical statistics method, such as the least-squares method, the R/S analysis method, Mann-Kendall tests, and the correlation analysis method, the temporal and spatial distribution characteristics of extreme air temperature indices and its influencing factors were analyzed. The results show that the annual maximum daily maximum temperature indices increased at a rate of 0.09 ℃ per decade, which is insignificant, whereas the annual minimum of daily minimum temperature indices warmed at a rate of 0.97 ℃ per decade. The cool indices (cool days, cool nights, frosts days, and icing days) decreased at rates of 1.75 ℃, 5.24 ℃, 4.07 ℃, and 1.84 ℃ per decade, whereas warm indices (warm nights, summer days, and tropical nights) significantly increased at rates of 1.79 ℃, 5.89 ℃, 2.18 ℃, and 2.08 ℃ per decade. The future trends of 10 extreme temperature indices were the same as the past 58 years. The variation of cool and warm indices was asymmetrical. The magnitude of the coldest daily minimum temperature was greater than the warmest daily maximum temperature. The change range of night indices (cool nights, warm nights) was larger than that of day indices (cool days, warm days). The warming magnitude of the most extreme temperature indices was greater in the northern Tacheng Prefecture than the southern. The annual minimum daily minimum temperature (cool days and cool nights) changed suddenly in the early 1980s, and warm days, warm nights, summer nights, tropical nights, and frost days showed a sudden warming change in the mid-1990s. In summary, the influence of atmospheric circulation was higher for cool indices than warm indices. Cool days, cool nights, frost days, and icing days positively correlated with circulation indices, such as the Northern Hemisphere polar vortex area, Asia polar vortex area index in winter, Pacific polar vortex area, North America polar vortex area, Atlantic-Eurasian polar vortex area index, Eurasian and Asian meridional circulation index. However, these cool indices negatively correlated with Eurasian and Asian zonal circulation and the Tibetan Plateau index. Those warm indices (warm days, warm nights, summer days, and tropical nights) positively correlated with the Northern Hemisphere subtropical high area, Western Pacific subtropical high area indices in summer, and the Tibetan Plateau index. The cool indices negatively correlated with Atlantic Ocean SST and Niño Region (Tropical Pacific) SST, whereas warm indices positively correlated with Atlantic Ocean SST, more remarkable night indices responded to SST than day indices.

Key words: extreme temperature events, change characteristics, atmospheric circulation index, sea surface temperature, Tacheng Prefecture