收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (1): 119-129.doi: 10.12118/j.issn.1000-6060.2024.035 cstr: 32274.14.ALG2024035

• 区域发展 • 上一篇    下一篇

中国家庭消费间接碳排放空间关联结构演变——基于社会网络分析法

付伟1(), 巩海秀1, 陈建成2   

  1. 1.西南林业大学经济管理学院,云南 昆明 650233
    2.北京林业大学经济管理学院,北京 100083
  • 收稿日期:2024-01-17 修回日期:2024-04-24 出版日期:2025-01-25 发布日期:2025-01-21
  • 作者简介:付伟(1986-),女,博士,副教授,主要从事生态经济与可持续发展等方面的研究. E-mail: fuweiynlzd@126.com
  • 基金资助:
    国家自然科学基金项目(72264035);云南省兴滇英才青年人才专项项目资助

Evolution of spatial correlation structure of indirect carbon emissions from household consumption in China: Based on social network analysis

FU Wei1(), GONG Haixiu1, CHEN Jiancheng2   

  1. 1. College of Economics and Management, Southwest Forestry University, Kunming 650233, Yunnan, China
    2. College of Economics and Management, Beijing Forestry University, Beijing 100083, China
  • Received:2024-01-17 Revised:2024-04-24 Published:2025-01-25 Online:2025-01-21

摘要: 把握家庭消费间接碳排放的空间聚类及结构特征对于中国在新发展格局下实现“双碳”目标具有重要意义。在测算出中国家庭消费间接碳排放量的基础上,运用社会网络分析法探究2013—2022年中国家庭消费间接碳排放空间关联网络结构特征。结果表明:(1) 家庭消费间接碳排放量整体呈上升趋势,10 a间增长了1.2倍;其中“食品”“居住”“交通通信”和“教育文化娱乐”为主构成部分,占总量的75%。(2) 整体网络特征:以江苏、北京、浙江、上海等省市为中心,呈“核心-边缘”分布趋势。其中,网络密度和关联数有所下降,等级梯度和关联密度有所上升。(3) 块模型特征:按照节点溢出和接收效应划分为四大板块,即“净溢出”“净受益”“经纪人”和“双向溢出”,各板块在空间关联领域中扮演不同角色。(4) 个体网络特征:上海、江苏、浙江等省市中心度最高位于关联网络的核心区域,空间关联性影响显著,具有向外辐射的特点,而青海、黑龙江等省份处于关联网络边缘区域,关联效应较弱。

关键词: 家庭消费间接碳排放, 空间关联网络, 社会网络分析, 引力模型

Abstract:

Understanding the spatial clustering and structural characteristics of indirect carbon emissions from household consumption is crucial for China to achieve the “carbon peaking and carbon neutrality” goal under its new development framework. This study calculates indirect carbon emissions from household consumption in China and examines the structural characteristics of the spatial correlation network for these emissions from 2013 to 2022 using social network analysis. The findings reveal the following: (1) Indirect carbon emissions from household consumption exhibit an overall upward trend, increasing 1.2-fold over ten years. Emissions from “food”, “housing”, “transport and communication”, and “education, culture, and entertainment” constitute 75% of the total. (2) Overall network characteristics: The overall network structure, centered on provinces and cities such as Jiangsu Province, Beijing City, Zhejiang Province, and Shanghai City, demonstrates a “core-edge” distribution pattern. Network density and the number of associations have declined, while grade gradient and association intensity have increased. (3) Characteristics of the block model: Regional network characteristics, based on node spillover and reception effects, are categorized into four segments: “net spillover”, “net benefit”, “broker”, and “two-way spillover”, and each segment plays different roles in the field of spatial correlation. (4) Individual network characteristics: Regarding individual network characteristics, provinces such as Shanghai City, Jiangsu Province, and Zhejiang Province, with the highest degree of centrality, occupy the core areas of the correlation network and exhibit significant spatial correlation and outward radiation effects. In contrast, provinces such as Qinghai Province and Heilongjiang Province, located on the periphery, exhibit weaker correlation effects.

Key words: indirect carbon emissions from household consumption, spatially associative networks, social network analysis, gravitational model