[1] |
吉雪强, 张跃松. 长江经济带种植业碳排放效率空间关联网络结构及动因[J]. 自然资源学报, 2023, 38(3): 675-693.
doi: 10.31497/zrzyxb.20230308
|
|
[Ji Xueqiang, Zhang Yuesong. Spatial correlation network structure and drivers of carbon emission efficiency of plantation industry in Yangtze River Economic Belt[J]. Journal of Natural Resources, 2023, 38(3): 675-693.]
doi: 10.31497/zrzyxb.20230308
|
[2] |
华怡婷, 石宝峰. 互联网使用与家庭间接碳排放: 测度及影响因素分析[J]. 重庆大学学报(社会科学版), 2023, 29(1): 117-134.
|
|
[Hua Yiting, Shi Baofeng. Internet use and household indirect carbon emissions: Measurement and influencing factors analysis[J]. Journal of Chongqing University (Social Science Edition), 2023, 29(1): 117-134.]
|
[3] |
邵帅, 徐俐俐, 杨莉莉. 千里“碳缘”一线牵: 中国区域碳排放空间关联网络的结构特征与形成机制[J]. 系统工程理论与实践, 2023, 43(4): 958-983.
doi: 10.12011/SETP2022-1418
|
|
[Shao Shuai, Xu Lili, Yang Lili. Structural characteristics and formation mechanism of spatial correlation network of regional carbon emissions in China[J]. Systems Engineering Theory and Practice, 2023, 43(4): 958-983.]
|
[4] |
彭璐璐, 李楠, 郑智远, 等. 中国居民消费碳排放影响因素的时空异质性[J]. 中国环境科学, 2021, 41(1): 463-472.
|
|
[Peng Lulu, Li Nan, Zhang Zhiyuan, et al. Spatial-temporal heterogeneity of influencing factors of carbon emissions from Chinese household consumption[J]. China Environmental Science, 2021, 41(1): 463-472.]
|
[5] |
史琴琴, 鲁丰先, 陈海, 等. 中原经济区城镇居民消费间接碳排放时空格局及其影响因素[J]. 资源科学, 2018, 40(6): 1297-1306.
doi: 10.18402/resci.2018.06.19
|
|
[Shi Qinqin. Lu Fengxian, Chen Hai, et al. Temporal-spatial patterns and factors affecting indirect carbon emissions from urban consumption in the Central Plains economic region[J]. Resources Science, 2018, 40(6): 1297-1306.]
doi: 10.18402/resci.2018.06.19
|
[6] |
李治, 李培, 郭菊娥, 等. 城市家庭碳排放影响因素与跨城市差异分析[J]. 中国人口·资源与环境, 2013, 23(10): 87-94.
|
|
[Li Zhi, Li Pei, Guo Ju’e, et al. Analysis of factors influencing urban household carbon emissions and cross-city differences[J]. China Population, Resources and Environment, 2013, 23(10): 87-94.]
|
[7] |
庄贵阳, 魏鸣昕. 城市引领碳达峰、碳中和的理论和路径[J]. 中国人口·资源与环境, 2021, 31(9): 114-121.
|
|
[Zhuang Guiyang, Wei Mingxin. Theory and pathway of city leadership in emission peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 114-121.]
|
[8] |
Belaid F, Rault C. Energy expenditure in Egypt: Empirical evidence based on a quantile regression approach[J]. Environmental Modeling & Assessment, 2021, 26(4): 511-528.
|
[9] |
韩君, 牛士豪, 高瀛璐. 新发展阶段居民家庭碳排放核算及影响因素研究[J]. 兰州财经大学学报, 2023, 39(1): 68-80.
|
|
[Han Jun, Niu Shihao, Gao Yinglu. Research on accounting and influencing factors of household carbon emissions in the new development stage[J]. Journal of Lanzhou University of Finance and Economics, 2023, 39(1): 68-80.]
|
[10] |
Bin S, Dowlatabadi H. Consumer lifestyle approach to US energy use and the related CO2 emissions[J]. Energy Policy, 2005, 33(2): 197-208.
|
[11] |
Fan J, Guo X, Marinova D, et al. Embedded carbon footprint of Chinese urban households: Structure and changes[J]. Journal of Cleaner Production, 2012, 33: 50-59.
|
[12] |
范玲, 汪东. 我国居民间接能源消费碳排放的测算及分解分析[J]. 生态经济, 2014, 30(7): 28-32.
|
|
[Fan Ling, Wang Dong. Calculation and decomposition analysis on carbon emissions of indirect residents’ consumption in China[J]. Ecological Economy, 2014, 30(7): 28-32.]
|
[13] |
陈为公, 程准, 张娜, 等. 山东省农村居民生活间接碳排放影响因素[J]. 沈阳大学学报(社会科学版), 2021, 23(3): 273-278, 286.
|
|
[Chen Weigong, Cheng Zhun, Zhang Na, et al. Influencing factors of indirect carbon emissions in rural residents in Shandong Province[J]. Journal of Shenyang University (Social Science Edition), 2021, 23(3): 273-278, 286.]
|
[14] |
吴茜, 陈强强. 甘肃省行业碳排放影响因素及脱钩努力研究[J]. 干旱区地理, 2023, 46(2): 274-283.
doi: 10.12118/j.issn.1000-6060.2022.126
|
|
[Wu Xi, Chen Qiangqiang. Influencing factors and decoupling efforts of industry-related carbon emissions in Gansu Province[J]. Arid Land Geography, 2023, 46(2): 274-282.]
doi: 10.12118/j.issn.1000-6060.2022.126
|
[15] |
吴开亚, 王文秀, 张浩, 等. 上海市居民消费的间接碳排放及影响因素分析[J]. 华东经济管理, 2013, 27(1): 1-7.
|
|
[Wu Kaiya, Wang Wenxiu, Zhang Hao, et al. Indirect carbon emissions of Shanghai’s residents consumption and its influence factors[J]. East China Economic Management, 2013, 27(1): 1-7.]
|
[16] |
杜娅明, 白永平, 梁建设, 等. 黄河流域旅游业碳排放效率综合测度及影响因素研究[J]. 干旱区地理, 2023, 46(12): 2074-2085.
doi: 10.12118/j.issn.1000-6060.2023.193
|
|
[Du Yaming, Bai Yongping, Liang Jianshe, et al. Comprehensive measurement and influencing factors of carbon emission efficiency of tourism in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(12): 2074-2085.]
doi: 10.12118/j.issn.1000-6060.2023.193
|
[17] |
邹嘉龄, 刘卫东. 2001—2013年中国与“一带一路”沿线国家贸易网络分析[J]. 地理科学, 2016, 36(11): 1629-1636.
doi: 10.13249/j.cnki.sgs.2016.11.004
|
|
[Zou Jialing, Liu Weidong. Trade network of China and countries along “Belt and Road Initiative” areas from 2001 to 2013[J]. Scientia Geographica Sinica, 2016, 36(11): 1629-1636.]
|
[18] |
Liu W, Xu J, Li J. The influence of poverty alleviation resettlement on rural household livelihood vulnerability in the western mountainous areas[J]. Sustainability, 2018, 10(8): 2793, doi: 10.3390/su10082793.
|
[19] |
邵璇璇, 姚永玲. 长江中游城市群的空间网络特征及其影响机制[J]. 城市问题, 2019, 10: 15-26.
|
|
[Shao Xuanxuan, Yao Yongling. Spatial network characteristics and influence mechanisms of city clusters in the middle reaches of the Yangtze River[J]. Urban Problems, 2019, 10: 15-26.]
|
[20] |
Mi Z, Meng J, Green F, et al. China’s “exported carbon” peak: Patterns, drivers, and implications[J]. Geophysical Research Letters, 2018, 45: 4309-4318.
|
[21] |
孙敏, 杨红娟, 刘海洋. 少数民族农户生活消费间接碳排放影响因素研究[J]. 经济问题探索, 2016(5): 51-58.
|
|
[Sun Min, Yang Hongjuan, Liu Haiyang. Research on influencing factors of indirect carbon emissions from household consumption of ethnic minority farmers[J]. Exploration of Economic Issues, 2016(5): 51-58.]
|
[22] |
王晓平, 冯庆, 宋金昭. 成渝城市群碳排放空间关联结构演化及影响因素[J]. 中国环境科学, 2020, 40(9): 4123-4134.
|
|
[Wang Xiaoping, Feng Qing, Song Jinzhao. The spatial association structure evolution of carbon emissions in Chengdu-Chongqing urban agglomeration and its influence mechanism[J]. China Environmental Science, 2020, 40(9): 4123-4134.]
|
[23] |
Mayer H M, Ullman E L. American commodity flow: A geographical interpretation of rail and water traffic based on principles of spatial interchange[J]. Geographical Review, 1959, 49(1): 142, doi: 10.2307/211582.
|
[24] |
孙中瑞, 樊杰, 孙勇, 等. 中国绿色科技创新效率空间关联网络结构特征及影响因素[J]. 经济地理, 2022, 42(3): 33-43.
doi: 10.15957/j.cnki.jjdl.2022.03.004
|
|
[Sun Zhongrui, Fan Jie, Sun Yong, et al. Structural characteristics and influencing factors of spatial correlation network of green science and technology innovation efficiency in China[J]. Economic Geography, 2022, 42(3): 33-43.]
doi: 10.15957/j.cnki.jjdl.2022.03.004
|
[25] |
赵林, 高晓彤, 刘焱序, 等. 中国包容性绿色效率空间关联网络结构演变特征分析[J]. 经济地理, 2021, 41(9): 69-78, 90.
|
|
[Zhao Lin, Gao Xiaotong, Liu Yanxu, et al. Evolution characteristics of inclusive green efficiency spatial association network structure in China[J]. Economic Geography, 2021, 41(9): 69-78, 90.]
|
[26] |
Wasserman S, Faust K. Social network analysis: Methods and applications[J]. Contemporary Sociological, 1994, 91: 219-220.
|
[27] |
杨上广, 王春兰, 刘淋. 上海家庭出行碳排放基本特征、空间模式及影响因素研究[J]. 中国人口·资源与环境, 2014, 24(6): 148-153.
|
|
[Yang Shangguang, Wang Chunlan, Liu Lin. Study on the basic characteristics, spatial patterns and influencing factors of carbon emissions of household travel in Shanghai[J]. China Population, Resources and Environment, 2014, 24(6): 148-153.]
|
[28] |
刘英恒太, 杨丽娜. 中国数字经济产出的空间关联网络结构与影响因素研究[J]. 技术经济, 2021, 40(9): 137-145.
|
|
[Liu Yinghengtai, Yang Lina. Research on the structure and influencing factors of spatially correlate network of China’s digital economy output[J]. Technology Economics, 2021, 40(9): 137-145.]
|
[29] |
孙亚男, 刘华军, 刘传明, 等. 中国省际碳排放的空间关联性及其效应研究——基于SNA的经验考察[J]. 上海经济研究, 2016(2): 82-92.
|
|
[Sun Yanan, Liu Huajun, Liu Chuanming, et al. Study on spatial correlation and effect of interprovincial carbon emissions in China: An empirical investigation based on SNA[J]. Shanghai Economic Research Journal, 2016(2): 82-92.]
|