收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (2): 305-315.doi: 10.12118/j.issn.1000-6060.2022.176

• 区域发展 • 上一篇    下一篇

甘肃省绿色发展效率时空演化与驱动因素研究

鹿晨昱1,2(),黄萍1,张彤1,刘小莞2,成薇1   

  1. 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    2.兰州交通大学建筑与城市规划学院,甘肃 兰州 730070
  • 收稿日期:2022-04-25 修回日期:2022-05-20 出版日期:2023-02-25 发布日期:2023-03-14
  • 作者简介:鹿晨昱(1981-),男,副教授,主要从事人地关系与区域可持续发展等方面的研究. E-mail: lcy19810507@163.com
  • 基金资助:
    国家自然科学基金项目(42061054);国家自然科学基金项目(41561110);甘肃省科技计划项目(20CX4ZA039);甘肃省科技计划项目(21JR1RA234)

Spatiotemporal evolution and driving factors of the green development efficiency in Gansu Province

LU Chenyu1,2(),HUANG Ping1,ZHANG Tong1,LIU Xiaowan2,CHENG Wei1   

  1. 1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    2. School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2022-04-25 Revised:2022-05-20 Online:2023-02-25 Published:2023-03-14

摘要:

提升绿色发展效率对甘肃省生态文明建设、高质量发展至关重要。采用Super-SBM模型、热点分析和地理探测器分析2005—2019年甘肃省14个市州绿色发展效率时空演化特征及其驱动因素。结果表明:(1) 时序上,绿色发展效率总体呈“M”型波动趋势,区域相对差异亦表现出相应的波动趋势。(2) 空间上,绿色发展效率空间分异性显著,南北方向梯度差明显大于东西方向。空间集聚程度弱,以低热点区、中热点区和低冷点区为主,存在俱乐部收敛特征。(3) 市场化水平、创新能力、政府调控、城镇化水平是绿色发展效率空间分异的主导因子。甘肃省绿色发展效率是多因子交互作用的结果。研究结果在丰富城市绿色发展指标体系和研究案例的同时,对甘肃省及其他欠发达地区绿色转型发展提供借鉴。

关键词: 绿色发展效率, Super-SBM模型, 地理探测器, 甘肃省

Abstract:

Improving the green development efficiency (GDE) is crucial for constructing ecological civilization and high-quality development in Gansu Province, China. Based on the Super-SBM model, hotspot analysis and the geographic detector model, Gansu Province from 2005 to 2019 was analyzed for the spatiotemporal evolution characteristics and driving factors of the GDE in 14 cities and prefectures. The following results are obtained: (1) Temporally, the GDE shows a pattern of “M”-shaped fluctuated growth, and the regional relative difference demonstrates a corresponding trend of fluctuation. (2) Spatially, the spatial heterogeneity of the GDE is significant, and the gradient difference in the north-south direction is significantly greater than that in the east-west direction. However, the degree of spatial agglomeration of the GDE is weak, dominated by low hot-spots, middle hot-spots, and low cold-spots. Additionally, the GDE displays a characteristic of spatial club convergence. (3) Marketization level, innovation ability, government regulation, and urbanization level are the driving factors of GDE. The GDE in Gansu Province is the result of the multifactor interaction. The results not only enrich the index system and case study of GDE but also can provide references for the green transformation development of Gansu Province and other less developed areas.

Key words: green development efficiency, the Super-SBM model, the geographic detector model, Gansu Province