干旱区地理 ›› 2022, Vol. 45 ›› Issue (6): 1740-1751.doi: 10.12118/j.issn.1000-6060.2022.086 cstr: 32274.14.ALG2022086
收稿日期:
2022-03-07
修回日期:
2022-05-18
出版日期:
2022-11-25
发布日期:
2023-02-01
作者简介:
梅静(1996-),女,硕士研究生,主要从事寒区生态水文等方面的研究. E-mail: 基金资助:
MEI Jing1(),SUN Meiping1,2(
),LI Lin1
Received:
2022-03-07
Revised:
2022-05-18
Published:
2022-11-25
Online:
2023-02-01
摘要:
基于Shuttleworth-Wallace Hu(SWH)双源蒸散模型对青藏高原那曲、纳木错、藏东南站蒸散发进行估算,在结果验证良好基础上,对青藏高原蒸散发变化特征及各站主要影响因素进行了分析。结果表明:SWH模型在青藏高原3个草甸站适用性良好;年蒸散发介于388~732 mm之间,年内分布呈先增大后减小特征;3站蒸散发组分差异较大,那曲站和纳木错站土壤蒸发对蒸散总量的贡献分别为53%和56%,藏东南站蒸散发则几乎全部由植被蒸腾贡献,占比高达95%;植被叶面积指数为3站蒸散发最主要的影响因素,饱和水汽压差对藏东南站蒸散发影响也较大。研究结果可对青藏高原蒸散发及其组分时空格局与水循环过程研究提供科学依据。
梅静, 孙美平, 李霖. 基于SWH模型的青藏高原高寒草甸蒸散发及其组分变化分析[J]. 干旱区地理, 2022, 45(6): 1740-1751.
MEI Jing, SUN Meiping, LI Lin. Variations of evapotranspiration and its components in alpine meadow on the Tibetan Plateau based on SWH model[J]. Arid Land Geography, 2022, 45(6): 1740-1751.
表1
蒸散发与各要素的分层回归及未标准化系数(标准化系数)"
站点 | 要素 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 |
---|---|---|---|---|---|---|---|
那曲站 | PAR | 0.085***(0.726) | 0.002(0.019) | -0.000(0.000) | -0.017**(-0.146) | -0.011(-0.096) | -0.005(-0.042) |
Ta | - | 0.106***(0.920) | 0.105***(0.909) | 0.075***(0.655) | 0.073***(0.636) | 0.005(0.044) | |
VPD | - | - | 0.229(0.035) | 0.648*(0.097) | 0.905**(0.136) | 1.719***(0.259) | |
Rn | - | - | - | 0.082***(0.348) | 0.092***(0.390) | 0.085***(0.359) | |
G | - | - | - | - | -0.272*(-0.115) | 0.068(0.029) | |
LAI | - | - | - | - | - | 0.190***(0.485) | |
Constant | -1.369 | 1.158 | 1.153 | 0.965 | 0.634 | -0.237 | |
N | 230 | 230 | 230 | 230 | 230 | 230 | |
R2 | 0.528 | 0.875 | 0.875 | 0.888 | 0.891 | 0.952 | |
ΔR2 | 0.528 | 0.347 | 0.000 | 0.013 | 0.002 | 0.061 | |
纳木错站 | Ta | 0.092***(0.835) | 0.066***(0.599) | 0.035***(0.320) | - | - | - |
Rn | - | 0.054***(0.328) | 0.047***(0.289) | - | - | - | |
LAI | - | - | 0.590***(0.405) | - | - | - | |
Constant | 1.495 | 1.123 | 0.597 | - | - | - | |
N | 230 | 230 | 230 | - | - | - | |
R2 | 0.697 | 0.748 | 0.818 | - | - | - | |
ΔR2 | 0.697 | 0.052 | 0.069 | - | - | - | |
藏东南站 | PAR | 0.117***(0.787) | 0.074***(0.497) | 0.048***(0.320) | 0.028**(0.190) | - | - |
Ta | - | 0.066***(0.440) | 0.054***(0.359) | -0.008(-0.056) | - | - | |
VPD | - | - | 4.196***(0.326) | 5.092***(0.396) | - | - | |
LAI | - | - | - | 0.043***(0.496) | - | - | |
Constant | -1.177 | -0.388 | -0.589 | -1.275 | - | - | |
N | 138 | 138 | 138 | 138 | - | - | |
R2 | 0.619 | 0.729 | 0.779 | 0.807 | - | - | |
ΔR2 | 0.619 | 0.110 | 0.050 | 0.029 | - | - |
[1] |
Qiu J. China: The third pole[J]. Nature News, 2008, 454(7203): 393-396.
doi: 10.1038/454393a |
[2] |
Ma N, Zhang Y S, Guo Y H, et al. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J]. Journal of Hydrology, 2015, 529: 980-992.
doi: 10.1016/j.jhydrol.2015.09.013 |
[3] |
Roderick M L, Hobbins M T, Farquhar G D. Pan evaporation trends and the terrestrial water balance: I. Principles and observations[J]. Geography Compass, 2009, 3(2): 746-760.
doi: 10.1111/j.1749-8198.2008.00213.x |
[4] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
doi: 10.1016/j.gloplacha.2013.12.001 |
[5] | 蓝永超, 丁永建, 沈永平, 等. 气候变化对黄河上游水资源系统影响的研究进展[J]. 气候变化研究进展, 2005, 1(3): 122-125. |
[Lan Yongchao, Ding Yongjian, Shen Yongping, et al. Review on impact of climate change on water resources system in the upper reaches of Yellow River[J]. Advances in Climate Change Research, 2005, 1(3): 122-125.] | |
[6] |
Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072.
doi: 10.1126/science.1128845 pmid: 16931749 |
[7] |
Yang Y T, Long D, Shang S H. Remote estimation of terrestrial evapotranspiration without using meteorological data[J]. Geophysical Research Letters, 2013, 40(12): 3026-3030.
doi: 10.1002/grl.50450 |
[8] |
Stannard D I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland[J]. Water Resources Research, 1993, 29(5): 1379-1392.
doi: 10.1029/93WR00333 |
[9] |
刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
doi: 10.11821/xb201105001 |
[Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588.]
doi: 10.11821/xb201105001 |
|
[10] | 李红霞, 张永强, 张新华, 等. 遥感Penman-Monteith模型对区域蒸散发的估算[J]. 武汉大学学报, 2011, 44(4): 457-461. |
[Li Hongxia, Zhang Yongqiang, Zhang Xinhua, et al. Estimation of regional transpiration and evaporation using Penman-Monteith equation[J]. Engineering Journal of Wuhan University, 2011, 44(4): 457-461.] | |
[11] | 杨文峰, 李星敏, 卢玲. 基于能量平衡的蒸散遥感估算模型的应用研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(2): 46-52. |
[Yang Wenfeng, Li Xingmin, Lu Ling. Application of remote sensing model based on energy balance to estimate evapotranspiration[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(2): 46-52.] | |
[12] | 宁亚洲, 张福平, 冯起, 等. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938. |
[Ning Yazhou, Zhang Fuping, Feng Qi, et al. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020, 43(4): 928-938.] | |
[13] | 史继清, 边多, 杨霏云, 等. 西藏地区潜在蒸散量变化特征及灰色模型预测初探[J]. 干旱区地理, 2021, 44(6): 1570-1579. |
[Shi Jiqing, Bian Duo, Yang Feiyun, et al. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet[J]. Arid Land Geography, 2021, 44(6): 1570-1579.] | |
[14] |
Martens B, Miralles D G, Lievens H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
doi: 10.5194/gmd-10-1903-2017 |
[15] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019 |
[16] |
Velpuri N M, Senay G B, Singh R K, et al. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET[J]. Remote Sensing of Environment, 2013, 139: 35-49.
doi: 10.1016/j.rse.2013.07.013 |
[17] |
尹剑, 欧照凡, 付强, 等. 区域尺度蒸散发遥感估算——反演与数据同化研究进展[J]. 地理科学, 2018, 38(3): 448-456.
doi: 10.13249/j.cnki.sgs.2018.03.015 |
[Yin Jian, Ou Zhaofan, Fu Qiang, et al. Review of current methodologies for regional evapotranspiration estimation: Inversion and data assimilation[J]. Scientia Geographica Sinica, 2018, 38(3): 448-456.]
doi: 10.13249/j.cnki.sgs.2018.03.015 |
|
[18] | 李晴, 杨鹏年, 彭亮, 等. 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021, 38(2): 351-358. |
[Li Qing, Yang Pengnian, Peng Liang, et al. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data[J]. Arid Zone Resarch, 2021, 38(2): 351-358.] | |
[19] |
赵燊, 陈少辉. 基于台站和MOD16数据的山东省蒸散及潜在蒸散时空变化[J]. 地理科学进展, 2017, 36(8): 1040-1047.
doi: 10.18306/dlkxjz.2017.08.013 |
[Zhao Shen, Chen Shaohui. Spatiotemporal variations of evapotranspiration and potential evapotranspiration in Shandong Province based on station observations and MOD16[J]. Progress in Geography, 2017, 36(8): 1040-1047.]
doi: 10.18306/dlkxjz.2017.08.013 |
|
[20] |
Shuttleworth W J, Wallace J S. Evaporation from sparse crops: An energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839-855.
doi: 10.1002/qj.49711146910 |
[21] | Ortega-Farias S, Poblete-Echeverría C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements[J]. Agricultural & Forest Meteorology, 2010, 150(2): 276-286. |
[22] | Zhang B Z, Kang S Z, Li F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural & Forest Meteorology, 2008, 148(10): 1629-1640. |
[23] |
Kato T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model[J]. Agricultural Water Management, 2004, 65(3): 173-191.
doi: 10.1016/j.agwat.2003.10.001 |
[24] |
Brisson N, Itier B, L’Hotel J C, et al. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models[J]. Ecological Modelling, 1998, 107(2-3): 159-169.
doi: 10.1016/S0304-3800(97)00215-9 |
[25] |
Hu Z M, Li S G, Yu G R, et al. Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model[J]. Journal of Hydrology, 2013, 501: 186-192.
doi: 10.1016/j.jhydrol.2013.08.006 |
[26] | Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J]. Agricultural & Forest Meteorology, 2009, 149(9): 1410-1420. |
[27] |
吴戈男, 胡中民, 李胜功, 等. SWH双源蒸散模型模拟效果验证及不确定性分析[J]. 地理学报, 2016, 71(11): 1886-1897.
doi: 10.11821/dlxb201611002 |
[Wu Genan, Hu Zhongmin, Li Shenggong, et al. Evaluation and uncertainty analysis of a two-source evapotranspiration model[J]. Acta Geographica Sinica, 2016, 71(11): 1886-1897.]
doi: 10.11821/dlxb201611002 |
|
[28] |
Jiang Z Y, Yang Z G, Zhang S Y, et al. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin[J]. Journal of Environmental Management, 2020, 262: 110310, doi: 10.1016/j.jenvman.2020.110310.
doi: 10.1016/j.jenvman.2020.110310 |
[29] | 马耀明. 青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005—2016)[DB/OL].[2022-04-18]. 国家青藏高原科学数据中心. |
[Ma Yaoming. A long-term dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau (2005—2016)[DB/OL].[2022-04-18]. National Tibetan Plateau Data Center.] | |
[30] |
Hu Z M, Wu G N, Zhang L X, et al. Modeling and partitioning of regional evapotranspiration using a satellite-driven water-carbon coupling model[J]. Remote Sensing, 2017, 9(1): 54, doi: 10.3390/rs9010054.
doi: 10.3390/rs9010054 |
[31] |
Li M S, Babel W, Chen X L, et al. A 3-year dataset of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements[J]. Theoretical and Applied Climatology, 2015, 122(3-4): 457-469.
doi: 10.1007/s00704-014-1302-0 |
[32] |
Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52-58.
doi: 10.1038/nclimate1633 |
[33] |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020, 226(6): 1550-1566.
doi: 10.1111/nph.16485 pmid: 32064613 |
[34] | 张亚春, 马耀明, 马伟强, 等. 青藏高原不同下垫面蒸散量及其与气象因子的相关性[J]. 干旱气象, 2021, 39(3): 366-373. |
[Zhang Yachun, Ma Yaoming, Ma Weiqiang, et al. Evapotranspiration variation and its correlation with meteorological factors on different underlying surfaces of the Tibetan Plateau[J]. Journal of Arid Meteorology, 2021, 39(3): 366-373.] | |
[35] |
Ma N, Zhang Y Q. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J]. Agricultural & Forest Meteorology, 2022, 317: 108887, doi: 10.1016/j.agrformet.2022.108887.
doi: 10.1016/j.agrformet.2022.108887 |
[36] |
Wang W G, Li J X, Yu Z B, et al. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying[J]. Journal of Hydrology, 2018, 559: 471-485.
doi: 10.1016/j.jhydrol.2018.02.065 |
[37] | Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning[J]. Agricultural & Forest Meteorology, 2014, 184: 56-70. |
[38] |
Zhao J F, Li C, Yang T Y, et al. Estimation of high spatiotemporal resolution actual evapotranspiration by combining the SWH model with the METRIC model[J]. Journal of Hydrology, 2020, 586: 124883, doi: 10.1016/j.jhydrol.2020.124883.
doi: 10.1016/j.jhydrol.2020.124883 |
[1] | 马红璐, 祁栋林, 赵彤, 曹晓云, 赵全宁, 张睿. 西宁市夏季居民区空气负离子浓度变化特征及其影响因子分析[J]. 干旱区地理, 2024, 47(8): 1358-1366. |
[2] | 马亚丽, 牛最荣, 孙栋元. 河西走廊潜在蒸散发时空格局变化与气象因素的关系[J]. 干旱区地理, 2024, 47(2): 192-202. |
[3] | 高晓宇, 郝海超, 张雪琪, 陈亚宁. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120. |
[4] | 魏涛, 王云权. 基于PML-V2数据集的中国蒸散发时空动态特征分析[J]. 干旱区地理, 2023, 46(6): 857-867. |
[5] | 杨一飞, 杨鹏年, 汪昌树, 寇鑫, 谭翻, 徐杰, 王翠. 新疆焉耆盆地农田耗水有效性评价[J]. 干旱区地理, 2023, 46(5): 730-741. |
[6] | 何旭刚, 买买提·沙吾提, 盛艳芳, 李荣鹏. 基于GEE平台渭库绿洲棉花水分生产率遥感估算[J]. 干旱区地理, 2023, 46(10): 1632-1642. |
[7] | 石万鹏, 李备, 刘景涛, 卓子钧, 陈玺. 可可西里土壤凝结水形成特征及其影响因素研究[J]. 干旱区地理, 2022, 45(6): 1729-1739. |
[8] | 项超生,汪勇,王君波,马庆峰,王世航. 高海拔干旱区湖泊沉积物多指标记录的环境变化研究——以阿克赛钦湖为例[J]. 干旱区地理, 2022, 45(2): 435-444. |
[9] | 张调风,杨昭明,温婷婷,来晓玲,马有绚. 青藏高原东北部区域持续性低温事件的特征及影响因子分析[J]. 干旱区地理, 2021, 44(4): 897-905. |
[10] | 谷佳贺,薛华柱,董国涛,周利娟,李静茹,党素珍,李尚志. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158-167. |
[11] | 段荣蕾,侯光良,魏海成,许清海,高靖易. 青藏高原东部高寒草甸区放牧家畜粪花粉组合特征及其环境指示意义[J]. 干旱区地理, 2021, 44(1): 229-239. |
[12] | 宁亚洲, 张福平, 冯起, 魏永芬, 李玲, 刘洁遥, 曾攀儒. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938. |
[13] | 张璐, 朱仲元, 张圣微, 王慧敏, 王飞, 席小康. 近59 a锡林河流域潜在蒸散发及地表干湿状况变化趋势分析[J]. 干旱区地理, 2020, 43(4): 997-1003. |
[14] | 许洁, 陈惠玲, 商沙沙, 杨欢, 朱高峰, 刘晓文. 2000—2014年青藏高原植被净初级生产力时空变化及对气候变化的响应 [J]. 干旱区地理, 2020, 43(3): 592-601. |
[15] | 赵建婷, 王艳君, 苏布达, 陶辉, 姜彤. 印度河流域气温、降水、蒸发及干旱变化特征 [J]. 干旱区地理, 2020, 43(2): 349-359. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|