[1] |
Qiu J. China: The third pole[J]. Nature News, 2008, 454(7203): 393-396.
doi: 10.1038/454393a
|
[2] |
Ma N, Zhang Y S, Guo Y H, et al. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J]. Journal of Hydrology, 2015, 529: 980-992.
doi: 10.1016/j.jhydrol.2015.09.013
|
[3] |
Roderick M L, Hobbins M T, Farquhar G D. Pan evaporation trends and the terrestrial water balance: I. Principles and observations[J]. Geography Compass, 2009, 3(2): 746-760.
doi: 10.1111/j.1749-8198.2008.00213.x
|
[4] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
doi: 10.1016/j.gloplacha.2013.12.001
|
[5] |
蓝永超, 丁永建, 沈永平, 等. 气候变化对黄河上游水资源系统影响的研究进展[J]. 气候变化研究进展, 2005, 1(3): 122-125.
|
|
[Lan Yongchao, Ding Yongjian, Shen Yongping, et al. Review on impact of climate change on water resources system in the upper reaches of Yellow River[J]. Advances in Climate Change Research, 2005, 1(3): 122-125.]
|
[6] |
Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072.
doi: 10.1126/science.1128845
pmid: 16931749
|
[7] |
Yang Y T, Long D, Shang S H. Remote estimation of terrestrial evapotranspiration without using meteorological data[J]. Geophysical Research Letters, 2013, 40(12): 3026-3030.
doi: 10.1002/grl.50450
|
[8] |
Stannard D I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland[J]. Water Resources Research, 1993, 29(5): 1379-1392.
doi: 10.1029/93WR00333
|
[9] |
刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
doi: 10.11821/xb201105001
|
|
[Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588.]
doi: 10.11821/xb201105001
|
[10] |
李红霞, 张永强, 张新华, 等. 遥感Penman-Monteith模型对区域蒸散发的估算[J]. 武汉大学学报, 2011, 44(4): 457-461.
|
|
[Li Hongxia, Zhang Yongqiang, Zhang Xinhua, et al. Estimation of regional transpiration and evaporation using Penman-Monteith equation[J]. Engineering Journal of Wuhan University, 2011, 44(4): 457-461.]
|
[11] |
杨文峰, 李星敏, 卢玲. 基于能量平衡的蒸散遥感估算模型的应用研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(2): 46-52.
|
|
[Yang Wenfeng, Li Xingmin, Lu Ling. Application of remote sensing model based on energy balance to estimate evapotranspiration[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(2): 46-52.]
|
[12] |
宁亚洲, 张福平, 冯起, 等. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938.
|
|
[Ning Yazhou, Zhang Fuping, Feng Qi, et al. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020, 43(4): 928-938.]
|
[13] |
史继清, 边多, 杨霏云, 等. 西藏地区潜在蒸散量变化特征及灰色模型预测初探[J]. 干旱区地理, 2021, 44(6): 1570-1579.
|
|
[Shi Jiqing, Bian Duo, Yang Feiyun, et al. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet[J]. Arid Land Geography, 2021, 44(6): 1570-1579.]
|
[14] |
Martens B, Miralles D G, Lievens H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
doi: 10.5194/gmd-10-1903-2017
|
[15] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019
|
[16] |
Velpuri N M, Senay G B, Singh R K, et al. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET[J]. Remote Sensing of Environment, 2013, 139: 35-49.
doi: 10.1016/j.rse.2013.07.013
|
[17] |
尹剑, 欧照凡, 付强, 等. 区域尺度蒸散发遥感估算——反演与数据同化研究进展[J]. 地理科学, 2018, 38(3): 448-456.
doi: 10.13249/j.cnki.sgs.2018.03.015
|
|
[Yin Jian, Ou Zhaofan, Fu Qiang, et al. Review of current methodologies for regional evapotranspiration estimation: Inversion and data assimilation[J]. Scientia Geographica Sinica, 2018, 38(3): 448-456.]
doi: 10.13249/j.cnki.sgs.2018.03.015
|
[18] |
李晴, 杨鹏年, 彭亮, 等. 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021, 38(2): 351-358.
|
|
[Li Qing, Yang Pengnian, Peng Liang, et al. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data[J]. Arid Zone Resarch, 2021, 38(2): 351-358.]
|
[19] |
赵燊, 陈少辉. 基于台站和MOD16数据的山东省蒸散及潜在蒸散时空变化[J]. 地理科学进展, 2017, 36(8): 1040-1047.
doi: 10.18306/dlkxjz.2017.08.013
|
|
[Zhao Shen, Chen Shaohui. Spatiotemporal variations of evapotranspiration and potential evapotranspiration in Shandong Province based on station observations and MOD16[J]. Progress in Geography, 2017, 36(8): 1040-1047.]
doi: 10.18306/dlkxjz.2017.08.013
|
[20] |
Shuttleworth W J, Wallace J S. Evaporation from sparse crops: An energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839-855.
doi: 10.1002/qj.49711146910
|
[21] |
Ortega-Farias S, Poblete-Echeverría C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements[J]. Agricultural & Forest Meteorology, 2010, 150(2): 276-286.
|
[22] |
Zhang B Z, Kang S Z, Li F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural & Forest Meteorology, 2008, 148(10): 1629-1640.
|
[23] |
Kato T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model[J]. Agricultural Water Management, 2004, 65(3): 173-191.
doi: 10.1016/j.agwat.2003.10.001
|
[24] |
Brisson N, Itier B, L’Hotel J C, et al. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models[J]. Ecological Modelling, 1998, 107(2-3): 159-169.
doi: 10.1016/S0304-3800(97)00215-9
|
[25] |
Hu Z M, Li S G, Yu G R, et al. Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model[J]. Journal of Hydrology, 2013, 501: 186-192.
doi: 10.1016/j.jhydrol.2013.08.006
|
[26] |
Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J]. Agricultural & Forest Meteorology, 2009, 149(9): 1410-1420.
|
[27] |
吴戈男, 胡中民, 李胜功, 等. SWH双源蒸散模型模拟效果验证及不确定性分析[J]. 地理学报, 2016, 71(11): 1886-1897.
doi: 10.11821/dlxb201611002
|
|
[Wu Genan, Hu Zhongmin, Li Shenggong, et al. Evaluation and uncertainty analysis of a two-source evapotranspiration model[J]. Acta Geographica Sinica, 2016, 71(11): 1886-1897.]
doi: 10.11821/dlxb201611002
|
[28] |
Jiang Z Y, Yang Z G, Zhang S Y, et al. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin[J]. Journal of Environmental Management, 2020, 262: 110310, doi: 10.1016/j.jenvman.2020.110310.
doi: 10.1016/j.jenvman.2020.110310
|
[29] |
马耀明. 青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005—2016)[DB/OL].[2022-04-18]. 国家青藏高原科学数据中心.
|
|
[Ma Yaoming. A long-term dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau (2005—2016)[DB/OL].[2022-04-18]. National Tibetan Plateau Data Center.]
|
[30] |
Hu Z M, Wu G N, Zhang L X, et al. Modeling and partitioning of regional evapotranspiration using a satellite-driven water-carbon coupling model[J]. Remote Sensing, 2017, 9(1): 54, doi: 10.3390/rs9010054.
doi: 10.3390/rs9010054
|
[31] |
Li M S, Babel W, Chen X L, et al. A 3-year dataset of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements[J]. Theoretical and Applied Climatology, 2015, 122(3-4): 457-469.
doi: 10.1007/s00704-014-1302-0
|
[32] |
Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52-58.
doi: 10.1038/nclimate1633
|
[33] |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020, 226(6): 1550-1566.
doi: 10.1111/nph.16485
pmid: 32064613
|
[34] |
张亚春, 马耀明, 马伟强, 等. 青藏高原不同下垫面蒸散量及其与气象因子的相关性[J]. 干旱气象, 2021, 39(3): 366-373.
|
|
[Zhang Yachun, Ma Yaoming, Ma Weiqiang, et al. Evapotranspiration variation and its correlation with meteorological factors on different underlying surfaces of the Tibetan Plateau[J]. Journal of Arid Meteorology, 2021, 39(3): 366-373.]
|
[35] |
Ma N, Zhang Y Q. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J]. Agricultural & Forest Meteorology, 2022, 317: 108887, doi: 10.1016/j.agrformet.2022.108887.
doi: 10.1016/j.agrformet.2022.108887
|
[36] |
Wang W G, Li J X, Yu Z B, et al. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying[J]. Journal of Hydrology, 2018, 559: 471-485.
doi: 10.1016/j.jhydrol.2018.02.065
|
[37] |
Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning[J]. Agricultural & Forest Meteorology, 2014, 184: 56-70.
|
[38] |
Zhao J F, Li C, Yang T Y, et al. Estimation of high spatiotemporal resolution actual evapotranspiration by combining the SWH model with the METRIC model[J]. Journal of Hydrology, 2020, 586: 124883, doi: 10.1016/j.jhydrol.2020.124883.
doi: 10.1016/j.jhydrol.2020.124883
|