收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2022, Vol. 45 ›› Issue (3): 706-714.doi: 10.12118/j.issn.1000-6060.2021.341

• 气候变化 • 上一篇    下一篇

祁连山及周边降水分布聚类检验和典型流域增雨效果评价

郭小芹1,2(),李光明2,孙占峰2,王兴涛2   

  1. 1.中国气象局云雾物理环境重点开放实验室,北京 100081
    2.武威市气象局,甘肃 武威 733000
  • 收稿日期:2021-07-30 修回日期:2021-11-14 出版日期:2022-05-25 发布日期:2022-05-31
  • 作者简介:郭小芹(1965-),女,高级工程师,主要从事应用气象与人影应用研究. E-mail: gxq9179@126.com
  • 基金资助:
    第二次青藏高原综合科学考察项目(2019QZKK0104);国家重点研发计划(2019YFC1510302);甘肃省气象局科研项目(Ms2022-21)

Cluster analysis with statistical test of precipitation distribution in Qilian Mountains and its surrounding area and evaluation of artificial precipitation enhancement in typical watershed

GUO Xiaoqin1,2(),LI Guangming2,SUN Zhanfeng2,WANG Xingtao2   

  1. 1. Key Laboratory for Cloud Physical Environment of China Meteorological Administration, Beijing 100081, China
    2. Wuwei Meteorological Bureau, Wuwei 733000, Gansu, China
  • Received:2021-07-30 Revised:2021-11-14 Online:2022-05-25 Published:2022-05-31

摘要:

祁连山及周边区域地形复杂,降水分布极不均匀,如何科学地分区分型,对把握研究区域降水分布特征具有极为重要的意义。利用该区域31个国家基本站1961—2020年5—9月降水量资料,采用主成分分析方法(PCA)对该区域降水量进行分析,再通过聚类分析(CAST)对该结果进行显著性检验,最后将分区分型结果应用于人工增雨作业效果评估。结果表明:(1) 祁连山及周边可分成7个区域(Z1~Z7),累积方差贡献率超过78%。(2) 这7个区域分别以乐都、海晏、野牛沟、武威、高台、临泽、刚察为中心点,划分结果与降水量、地理地形、海拔高度显著关联。(3) 依托区域历史回归统计方法对人工增雨作业效果进行评价,发现1992—2020年石羊河流域5—9月绝对增雨量、相对增雨率分别为8.91 mm、6.51%,其中7月最高(6.30 mm、21.86%),8月次之(5.44 mm、16.11%)。基于地面降水量的作业效果评价往往受对比区选择的影响,聚类检验方法不仅有助于复杂地形下降水量的分区研究,还为科学选择对比区提供了客观依据。

关键词: 聚类检验, 主成分分析, 分区分型, 增雨效果评价

Abstract:

The topography of Qilian Mountains and its surrounding areas in northwest China is complex, and the precipitation it receives is extremely irregular in time and space. The ability to characterize the distribution of rainfall and snowfall has great practical significance for understanding changes in precipitation patterns. Using data from 31 base stations covering the months of May-September, 1961—2020, precipitation was analyzed by principal component analysis (PCA). The significance of the results was then tested by cluster analysis with statistical test (CAST). Finally, a geographic zonation was applied to evaluate the effects of artificial precipitation enhancement. The results show that: (1) Seven geographic areas (Z1-Z7) can satisfactorily represent the characteristics of precipitation distribution in the study area (the contribution rate of cumulative variance exceeds 78%). (2) The zones take Ledu, Haiyan, Yeniugou, Wuwei, Gaotai, Linze, and Gangcha stations as the central points respectively, and their zonal characteristics significantly reflect precipitation, terrain, and altitude. (3) Effects of artificial precipitation enhancement were evaluated by statistical regression of regional historical data. For the months of May-September during 1992—2020, the benefit was most pronounced in the Shiyang River Basin, where the absolute enhancement was 8.91 mm and the relative precipitation enhancement rate was 6.51% with the highest in July (6.30 mm, 21.86%), followed by August (5.44 mm, 16.11%). Assessing artificial enhancement of precipitation based on ground data relies heavily on the selection of a suitable comparison area, so results can change significantly with different comparison choices. The method of cluster analysis with statistical testing is not only helpful in zoning and classification of precipitation in complex terrain, but it also provides an objective basis for the selection of comparison areas.

Key words: cluster analysis with statistical test (CAST), principal component analysis (PCA), division and classification, evaluation of precipitation enhancement effects